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ABSTRACT 
New techniques are presented that enable the shear strength reduction (SSR) method to be used in a probabilistic 
fashion to obtain reliable estimates of probability of slope failure.  The combination of Point Estimate methods for 
generating random samples, along with parallel processing techniques and easy to use interfaces for model set-up and 
interpretation, allows quick and easy statistical analysis using the SSR approach.  Examples are presented and 
compared with Monte-Carlo limit equilibrium analyses. 
 
RÉSUMÉ 
Des nouvelles techniques sont presentées qui permettent la méthode de la réduction de la résistance au cisaillement 
(RRC) d’être utilisée de façon probabiliste pour obtenir des estimations fiables la probabilité de la rupture de la pente. 
La combinaison des méthodes  d’estimation ponctuelles pour générer des échantillons aléatoires, accompagnées des 
techniques de traitement parallèles ainsi que des interfaces qui sont faciles à utiliser pour mettre en place le modèle et 
faire de claires interpretations , permet un analyse statistique qui est rapide et facile en utilisant l’approche de RRC. 
Des examples sont presentés et sont comparés avec les analyses de la limite de l’équilibre de Monte-Carlo. 
 
 
 
1 INTRODUCTION 
 
Slope stability is strongly dependent on the strength of 
the soil.  However, accurate estimates of soil material 
properties (cohesion and friction angle) are often difficult 
to obtain.  For this reason, probabilistic slope stability 
analysis is a popular method in engineering design.  With 
limit equilibrium methods, Monte-Carlo simulations with 
variable strength parameters can be performed quickly, 
and probability of slope failure can be easily determined.   
Many software programs have probabilistic capabilities 
built in to easily enable these types of analyses.  

Finite element methods (FE), using a shear strength 
reduction (SSR) approach can also be used to calculate 
factors of safety in slope stability analyses (e.g. Duncan, 
1996, Dawson et al., 1999).  These methods offer many 
advantages over limit equilibrium methods (e.g. ability to 
calculate stresses and displacements, model interactions 
between soil and support systems, etc.), however the 
disadvantage is that each finite element analysis is 
significantly more costly to set up and execute than the 
corresponding limit equilibrium analysis.  This drawback 
has generally prevented the FEM from being used in 
probabilistic slope stability analyses.  The time required 
to set up and run a Monte-Carlo simulation is usually too 
long for most practitioners.  

This paper will show how three different technologies 
now enable quick and easy finite element slope stability 
analyses.  Firstly, multi-core computers are now 
common and parallel processing programming 
techniques can be used to drastically speed up the finite 
element analyses.  Secondly, the Point Estimate Method 
can be used instead of Monte Carlo to get good results 

from fewer simulations.  Finally, built-in probabilistic 
modelling capabilities in finite element software make it 
significantly easier for engineers to set up simulations 
and interpret results. 

Several examples of probabilistic slope stability 
analyses are shown and results are compared between 
the limit equilibrium methods and the finite element 
method.  In particular, the calculated probability of failure 
and the time required to perform the analyses will be 
evaluated.  
 
 
2 METHODOLOGY 
 
2.1 Shear Strength Reduction 
 
The Shear Strength Reduction (SSR) method is now well 
established as a technique for analysing slope stability.  
The SSR method calculates the factor of safety for a 
slope by solving several different finite element models 
with different material strengths.  The following steps are 
executed: 
• The strength parameters of a slope are reduced by a 

certain factor (SRF), and the finite element stress 
analysis is computed. 

• This process is repeated for different values of 
strength reduction factor (SRF), until the model 
becomes unstable (the analysis results do not 
converge). 

• This determines the critical strength reduction factor 
(critical SRF), or safety factor, of the slope. 
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This technique has been used with different software 
programs with much success (see Dawson and Roth, 
1999, Hammah et al., 2005 and Griffiths and Lane, 1999 
for examples).   

The advantage of the SSR method over limit 
equilibrium analyses is that the shape of the critical 
failure surface does not need to be pre-defined.  The 
failure surface simply ‘falls out’ of the analysis.  In 
addition, a finite element analysis enables the 
observation of stresses, displacements and soil-support 
interaction.  Finite element analyses can also include 
elements such as joints that are not easily incorporated 
in limit equilibrium programs. The main disadvantages of 
the FE-SSR method are the time and expertise required 
setting up and interpreting a model, and the computer 
time required to perform the analysis – especially when 
probabilistic studies are performed.   

 
2.2 Point Estimate Method 
 
The most popular method for probabilistic slope stability 
analysis is the Monte Carlo method.  With this method, 
input variables (e.g. soil strength) are assigned random 
values from some statistical distribution (e.g. normal 
distribution) and an analysis is performed.  If this is 
repeated enough times, then an accurate assessment of 
the probability of failure can be obtained.  The method is 
robust, flexible and easy to implement.  The problem is 
that many simulations may be required to obtain 
reasonable accuracy.  With the FE-SSR approach, each 
simulation represents multiple solutions of a finite 
element model, and the Monte-Carlo method quickly 
becomes practically infeasible. 

The Point Estimate Method (PEM) overcomes these 
problems by requiring much fewer simulations (if the 
number of random variables is not large).  Instead of 
trying to sample from the all possible inputs, the PEM 
(Rosenbleuth, 1975 and Rosenbleuth, 1981) uses point 
estimates at selected values (known as weighting points) 
of the input random variables.  In its simplest form, the 
PEM uses two weighting values – typically one standard 
deviation to each side of the mean – for each input 
random variable. Each point is assigned a weight of 1/n 
where n is the total number of points.  For all the different 
possible permutations of the input, full FE analyses are 
carried out. The calculation of statistical moments for 
outputs is based on the results of the computed FE 
models. 

The disadvantage of the PEM is that when many 
variables are being tested, then many point evaluations 
are required (the number of simulations required 
increases exponentially with the number of variable 
inputs).  However for relatively simple slope stability 
problems, the number of random variables is usually 
small.  Also, the PEM is necessarily not as accurate as a 
full Monte-Carlo simulation.  By only evaluating a few 
samples, it is possible to miss some failure mechanisms.  
However this paper will show that the PEM is a quick and 
easy way to obtain a good estimate of probability of 
failure.  See Hammah et al (2009) for more details on the 
use of the Point Estimate Method in SSR analyses. 

 
2.3 Parallel Processing 
 
Most desktop computers are now sold with multiple 
cores.  This allows several applications to be run in 
parallel without a loss in performance.  Multi-core 
architecture can be exploited to drastically speed up finite 
element calculations.  For this paper, the finite element 
program Phase2 has been used (Rocscience Inc, 2009) 
with the following parallelizations: 

 
1. The inversion of the stiffness matrix is parallelized 

through the use of Intel’s Math Kernel Libraries 
(Intel, 2008) 

2. The calculation of internal forces is parallelized by 
splitting up the elements so that elements 
independently calculate and store their own internal 
forces on different cores and then all of the internal 
forces are brought together at the end of each non-
linear iteration. 

 
These two techniques drastically speed up the finite 
element simulations, depending on how many cores are 
in the computer. 

The relative importance of each technique depends 
on the nature of the finite element calculations.  For an 
‘initial stiffness’ approach, the stiffness matrix is inverted 
once and many iterations are performed in which internal 
forces are calculated.  In this case, technique #2 is 
dominant.  When using the ‘Newton-Raphson’ method, 
the stiffness matrix is recalculated and inverted every 
iteration and much fewer iterations are required.  With 
this method, technique #1 is most important.   

For an explicit finite element or finite difference 
calculation scheme (e.g. Itasca Consulting Group’s 
FLAC), there is no stiffness matrix, so only technique #2 
would apply. 
 
2.4 Interface Improvements 
 
One of the problems with performing probabilistic 
analyses with the finite element method is the time and 
effort required to set up the models.  While most limit 
equilibrium programs include probabilistic analysis 
capabilities, few finite element programs used in 
geotechnical engineering allow for easy set up and 
interpretation of probabilistic analyses. 

To speed up finite element probabilistic analyses, 
enhancements were made to the Phase2 interface.  
These enhancements allow the user to specify a mean 
and standard deviation for any material property, joint 
property or for in-situ stresses.  Point estimate models 
are then automatically set up and executed on multiple 
cores.  In addition, the interpretation of results is 
simplified by collating all of the results from the different 
simulations to enable easy viewing of probability of 
failure, as well as statistical information on all other 
results (e.g. mean and standard deviation displacement).  
These enhancements and parallelizations are currently 
being tested and are not yet part of the commercially 
available product. 
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3 EXAMPLES 
 
3.1 Example 1: Simple slope with one material 
 
The first example is from a set of problems proposed by 
Giam and Donald (1989) for testing slope stability 
software.  A finite element model of the slope is shown in 
Figure 1. 

 
Figure 1.  Finite element model of first example. 
 
 
The soil properties for the model are: 
 
 Unit Weight (γ)   =  20 kN/m3 
 Tensile strength  =  3 kPa 
 Cohesion (c)   Mean = 3 kPa, Std. Dev. = 1 kPa 
 Friction angle (φ)  Mean = 19.6°, Std. Dev = 5° 
 
The cohesion and friction angle were assigned statistical 
(normal) distributions.  Since there are two changing 
variables, the point estimate method requires 22 (=4) 
models to be run.  In this case, the following models are 
executed: 
 
 c = 2  φ = 14.6 

c = 4  φ = 14.6 
c = 2  φ = 24.6 
c = 4  φ = 24.6 

 
With a good interface, this model can be set up in 
minutes.  By simply entering the mean and standard 
deviation for the cohesion and friction (or any other 
material parameter) the necessary models are set up 
automatically.  The user can then specify the number of 
cores to be used when processing. When computation is 
started, all models are automatically calculated in an 
efficient manner according to the number of cores 
specified.  For this model, the calculations were finished 
in less than 4 minutes on a dual core machine. 

A traditional Monte-Carlo simulation with the limit 
equilibrium (LE) program Slide (Rocscience, 2007) was 
also executed to check the equivalency of the finite 
element results.  Several different LE methods were 
tested as shown in Table 1.  A good description of the 
different methods can be found in Abramson et al. 
(2001).  For the limit equilibrium Monte-Carlo simulation, 
1000 random simulations were executed.  To ensure 
accuracy, a full search was performed for each 
simulation (rather than simply altering the cohesion and 
friction on the deterministic failure surface).  The 

calculation took approximately 13 minutes on the same 
dual core PC (note that there is no parallelization in 
Slide).  All of the results are shown in Table 1.   

It is clear that the FE-SSR model using the Point 
Estimate method agrees well with the Monte-Carlo limit 
equilibrium analyses. Also – the calculation time for the 
FE-SSR approach was significantly less than the limit 
equilibrium calculation times.  The time required to set up 
the models and do the interpretation was about the same 
for both methods.   

 
 
 

Table 1.  Calculation results for the first example 
 

Model Mean FS1 Probability of Failure (%) 

FE-SSR 0.990 51.5 

LE (Bishop) 0.989 51 

LE (Janbu) 0.939 60.6 

LE (Spencer) 0.985 51.5 

LE (GLE2) 0.985 51.5 
1Factor of Safety 
2General Limit Equilibrium method.  Result is the same as the 
Morgenstern-Price method.   
 
 

Obviously, the FE-SSR was faster because much 
fewer models were run, and because of the parallel 
processing capabilities of the FE-SSR method.  However, 
most limit equilibrium programs are not set up to use the 
point estimate method and are not parallelized, so the 
time and effort required to set up, run and interpret a 
point estimate simulation with a limit equilibrium program 
would probably still be longer than solving the problem 
with a finite element program in which the process is 
automated and parallelized. 

 
3.2 Example 2: Slope with three materials 
 
This example is a slope composed of three different 
materials and is also from Giam and Donald (1989).  A 
finite element model of the slope is shown in Figure 2. 
 

 
Figure 2.  Finite element model of the second example. 
 
The cohesions and friction angles were assigned normal 
distributions as shown in Table 2.  All of the soils were 
assigned a unit weight of 19.5 kN/m3.   
 
 
Table 2.  Soil properties used in the second example. 
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 Mean Std. Dev. 
Soil 1,  c  (kPa) 0 - 
Soil 1,  φ (degrees) 38 6 
Soil 2,  c  (kPa) 5.3 1.5 
Soil 2,  φ (degrees) 23 5 
Soil 3,  c  (kPa) 7.2 2 
Soil 3,  φ (degrees) 20 4 
 
For this problem, 5 variables are being tested so 25 (=32) 
models are required.  It is clear how the addition of more 
variables quickly increases the number of required 
simulations.  However, the number required is still 
significantly less than would be required to obtain 
accurate results with a Monte-Carlo approach. 
 Since the process for performing the point estimate 
method is mostly automated, the time required to set up 
the model(s) was about 10 minutes.  The computation 
time to solve all 32 models on a dual core PC was about 
25 minutes.  On a 6-core PC, the time required was ~10 
minutes.  All computation times are summarized in Table 
3. 
 
Table 3.  Calculation times for the second example 

 
Model No. Of 

samples 
Computer Time to solve 

FE-SSR (PEM) 32 2-core1 25 min. 

  6-core2 10 min. 

FE-SSR (M-C) 1,000 2-core 13.5 hrs. 

  6-core 5.1 hrs 

LE (Monte-Carlo) 10,000 2-core 2.5 hrs. 
1Intel Core 2 Duo, 2.33 GHz 
2Intel Xeon 2.67 GHz 
 
 As with the previous example, a Monte-Carlo limit 
equilibrium analysis was performed for comparison 
purposes.  The probability of failure for this example was 
quite low, so to ensure sufficient sampling, 10,000 
random simulations were run for this example (instead of 
1,000 as in Example 1).  As in Example 1, a full search 
for critical failure surface was performed for each random 
sample. This required about 2.5 hours of computer time. 

The calculation results are shown in Table 4.  It 
shows that the mean factor of safety and the probability 
of failure for the FE-SSR model are slightly less than the 
limit equilibrium model.  To test if the differences were 
because of the sampling method (Point Estimate) or 
calculation method (FE-SSR), a Monte Carlo analysis 
was performed using the finite element method.  It was 
not feasible to run 10,000 simulations so 1,000 models 
were run.  This required approximately 13.5 hours on a 
dual core PC (about 5 hours on a PC with 6-cores).  The 
results from this test are also shown in Table 4.  It can be 
seen that the factor of safety from the Monte-Carlo FE-
SSR test is the same as from the Point Estimate method 
but that the probability of failure has increased and is 
now closer to the values obtained from the Limit 
Equilibrium tests.  The number of samples used (1000) is 

probably still too small to draw any firm conclusions but 
it appears that in this particular example, the Point 
Estimate approach may slightly underestimate the 
probability of failure. 
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Table 4.  Calculation results for the second example 

 
Model Mean FS Prob. of Failure (%) 

FE-SSR (Point Estimate) 1.30 3.34 

FE-SSR (Monte Carlo) 1.30 4.95 

LE (Bishop) 1.40 4.19 

LE (Janbu) 1.26 8.67 

LE (Spencer) 1.37 4.55 

LE (GLE) 1.37 4.51 

 
 
 This example is interesting because different failure 
surfaces emerge for different sets of parameters.  Often 
probabilistic analyses are performed by first locating the 
critical failure surface deterministically, and then 
randomly altering the material properties and calculating 
the factor of safety for this surface.  For the scenario 
shown in Figure 2, this approach would result in a whole 
suite of failures being missed. 
 Figure 3 shows the 10,000 critical failure surfaces 
found with the limit equilibrium probabilistic analysis.  It 
is clear that there are two main failure surface clusters; 
one that cuts through Soil 1 to create a failure surface 
that approximately intersects the crest.  A second failure 
surface is also common in which the surface follows 
along the boundary between Soil 1 and Soil 2 until 
eventually cutting up the surface.  This mechanism 
occurs when Soil 2 is relatively weak. 
 
 

 
Figure 3.  Critical failure surfaces found in the limit 
equilibrium Monte-Carlo simulation. 
 
This behaviour is further emphasized when looking at the 
finite element models.  Figures 4-6 show different 
possible failure mechanisms observed in the different 
manifestations of the finite element model (Point 
Estimate analysis).  It is clear that different mechanisms 
are occurring depending on the relative strengths of the 
different soil layers. 
 These figures further emphasize the usefulness of the 
SSR method.  With the SSR method, the critical failure 
surface emerges from the model without having to 
predefine its shape or location.  Figure 5 shows how the 
failure surface can be non-circular when Soil 2 is weak.  
Figure 6 shows a slumping mechanism in the Soil 1 layer 
that is not observed in the limit equilibrium analyses.   
 

 
Figure 4.  Maximum shear strain in a finite element 
model with mean material properties. 
 

 
Figure 5.  Maximum shear strain in a finite element 
model when Soil 2 is weak. 
 

 
Figure 6.  Maximum shear strain in a finite element 
model when Soil 1 is weak. 
 
 
 
3.3 Example 3: Jointed Rock 
 
This example is from Lorig and Varona (2001).  The 
model geometry is shown in Figure 7.  The slope is 260 
m high and dips at 55°.  A regular set of joints with a 10 
m spacing dipping at 35° is shown. 
 

 
Figure 7.  Geometry of jointed model of the third 
example. 
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The properties of the rock material are: 
 

Unit Weight (γ)    =  26.1 kN/m3 
Young’s modulus (E) =  9.072 GPa 
Poisson’s ratio (ν)  =  0.26 

 Tensile strength   =  0 kPa 
 Cohesion (c)    =   675 kPa 
 Friction angle (φ)   =  43° 
 
The rock material properties are assumed to be 
deterministic, and therefore not statistically varied for this 
example.  Instead the joint cohesion and friction are 
assigned normal distributions with the following 
parameters: 
 
Tensile Strength = 0 kPa 
Cohesion (cJ)  Mean = 100 kPa, Std. Dev. = 25 kPa 
Friction angle (φJ)  Mean = 40°, Std. Dev = 5° 
 
Since only 2 parameters were statistically varied, only 4 
Finite Element models were executed when using the 
Point Estimate method.  This took about 15 minutes on a 
dual core PC.  As with the other examples, assigning the 
mean and standard deviation for joint properties is 
automated in the interface and the relevant models are 
automatically generated and computed.  The model 
setup took about 15 minutes, for a total solution time of 
about half an hour.  Results are also collated by the 
program so interpretation was similarly simple and quick. 

Results are shown in Table 5.  There is no easy way 
to perform a limit equilibrium analysis for this example 
due to the distinct joints.  Instead, a Monte-Carlo FE-SSR 
simulation was performed with 1000 random models.   
It was estimated that this would take about 3 days to run 
on a dual core machine, so the model was set up on a 6-
core computer and the 1000 models were run in about 24 
hours.  These results are also shown in Table 5.  Table 5 
shows a basically good agreement between the Point 
Estimate results and the Monte-Carlo results. However, 
as with example 2, there are probably not enough models 
to accurately sample the ‘tails’ of the normal distribution.  
Since the probability of failure is quite low, then it is 
probably underestimated by the Monte-Carlo method with 
too few samples. 

Also shown in Table 5 are the deterministic factors of 
safety calculated for the same scenario using a distinct 
element model (see Lorig and Varona, 2001) and a finite 
element model (see Hammah et al., 2007).  
 
 
Table 5.  Calculation results for the third example 

 
Model Mean FS Prob. of Failure (%) 

FEM (Point Estimate) 1.31 4.63 

FEM (Monte Carlo) 1.31 2.87 

FEM (deterministic)1 1.32 - 

DEM (deterministic)2 1.27 - 
1Hammah et al. (2007) 

2Lorig and Varona (2001) 
 
 
As with example 2, this example is interesting in that 
different failure mechanisms occur depending on the joint 
properties.  Figure 8 shows the maximum shear strain 
and joint failure in a model with strong joints.  It is clear 
that the mechanism involves a combination of shear 
failure through intact material at the toe, slip along a joint 
near the bottom of the slope and then shear failure 
through the rock material at the top of the slope.  With a 
weak joint (Figure 9), it appears that there is no band of 
localized shearing through the rock and that most of the 
displacement is likely occurring along the joints. 
 This interpretation is emphasized in Figures 10 and 
11 which show the total displacement for strong joints 
and weak joints respectively.  Figure 10 (strong joints) 
suggests a rotational type failure, whereas Figure 11 
(weak joints) suggest more of a sliding wedge type failure 
mechanism. 
 

 
Figure 8.  Maximum shear strain and joint failure 
(coloured red) in model with strong joints. 
 

 
 
Figure 9.  Maximum shear strain and joint failure 
(coloured red) in model with weak joints. 
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Figure 10.  Total displacement in model with strong 
joints. 
 

 
 
Figure 11.  Total displacement in model with weak joints. 
 
 
 
4 DISCUSSION 
 
The preceding examples demonstrate how advances in 
computer modelling make it quick and easy to perform a 
probabilistic analysis to estimate the probability of failure 
in slopes when the soil properties (or joint properties) are 
uncertain.  These examples however, all assume that 
each material layer is homogeneous.  When the soil 
properties are altered in the probabilistic study, the soil 
properties throughout each layer are assigned the same 
values. 

What the above examples do not show, is the effect 
of spatial variation within a single model.  It is probably 
more realistic to consider a distribution of soil properties 
within a single model than a distribution of models with 
uniform soil properties.  A correlation length can then be 
used to dictate the ‘frequency’ of variation within each 
material.  Griffiths and Fenton (2004) give a good 
description of how this could be done with FE-SSR 
applied to slope stability problems. 

Unfortunately, the Point Estimate approach could not 
be used in these types of models.  The spatial variability 
in these models can lead to different failure mechanisms 
and factors of safety even when the same parameters 
are used.  This is because different manifestations of 
randomness may lead to weak seams within the material 
layers or some other spatial peculiarity that may affect 
the slope stability.  Also, limit equilibrium methods could 
not easily be used in this type of analysis.  To perform 

these studies, FE-SSR methods with Monte-Carlo 
randomizations are required. 

Similarly, models with different random geometries 
could not be simulated with the Point Estimate method.  
Hammah et al. (2009) show how different random 
manifestations of joint networks can have significant 
effects on factors of safety.  These types of analyses also 
require the Monte-Carlo method.  Determining the 
probability of failure for uncertain dam heights (Heidari 
and Roudsari, 2009) or uncertain slope geometries (El-
Ramly, et al, 2007) would fall into the same category. 

Griffiths and Fenton (2004) perform 1,000 Monte-
Carlo simulations to test their spatially correlated 
randomness.  This level of resources (in model set-up, 
calculation and interpretation) is currently well beyond 
what most practitioners can afford.  However, as multi-
core processors become more prevalent and software is 
written to take advantage of this new architecture and 
new modelling paradigm, then these types of analyses 
may become more common in the near future. 

 
 

5 CONCLUSIONS 
 
This paper shows how advances in finite element 
modelling methods can make it possible for time-
challenged engineering practitioners to perform 
probabilistic analyses using the finite element method 
combined with the Shear Strength Reduction technique.  
By using improved program interfaces, multi-core 
processing technologies and the Point Estimate method 
for randomization, FE-SSR analyses can actually be 
quicker than the equivalent limit equilibrium solutions. 
 The paper also shows that the FE-SSR approach 
gives similar mean factors of safety and probabilities of 
failure as the limit equilibrium method.  In addition, the 
FE-SSR approach offers other advantages over the limit 
equilibrium method such as the ability to observe 
displacements and stresses and the ability to include 
joints and other complex elements.  As technologies 
continue to improve it is envisaged that the probabilistic 
FE-SSR approach could be used for problems with 
spatial variability and/or geometric uncertainties such as 
slope height or joint spacing.   
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