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ABSTRACT 
This paper presents the basic concept of an energy approach in debris flow runout analysis. The framework is based 
on mass and energy conservation in the global and local sense and takes into account external and internal energy 
dissipation. The formulation of the governing equations is unique in its treatment of energy calculation adopting the 
Rankine active and passive state of failure. Although the energy approach degenerates to the existing momentum 
approach for special cases, it is potentially more robust in accounting for various internal mechanisms that may occur 
in debris flow. 
 
RÉSUMÉ 
Cet article présente le concept d’une approche énergétique à l’analyse des coulées de débris.  La démarche est 
dérivée de la conservation de la masse et de l’énergie tant au niveau global que local.  La formulation des équations 
de base est unique dans son traitement du calcul de l’énergie en utilisant l’approche active et passive de l’état de 
rupture de Rankine.  Bien que pour certains cas spéciaux, l’approche énergétique dégénère vers l’approche moment 
existante, elle est potentiellement plus robuste en tenant compte des diverses mechanismes internes qui peuvent 
apparaître en coulées de débris. 
 
 
 
 
1 INTRODUCTION 
 
Debris flows incorporate a broad range of sediment-fluid 
flows intermediate between dry rock avalanches and 
hyperconcentrated flow (Hungr et al. 2001). Debris flows 
and related phenomena are encountered in a variety of 
geological and geomorphological settings. Because of 
high flow velocities, large impact forces, long runout 
distances, and poor temporal predictability, debris flows 
are among the most dangerous and destructive natural 
hazards. Debris flows often have severe social, 
economic, and environmental consequences in 
mountainous environments, particularly on potential 
debris flow areas where settlements and infrastructure 
have been built. 

To mitigate and manage hazards induced by debris 
flows, it is necessary to understand the mechanisms of 
debris flow initiation, transport, and deposition and 
develop reliable analytical models to predict its 
behaviour. Numerical simulation of debris flows often 
adopt an equivalent fluid concept and momentum 
approach (Savage and Hutter 1989; Hungr 1995) in 
calculating the flow velocities, runout distance, and 
depositional profiles. Formulation of governing equations 
is based on the application of mass and momentum 
conservation equations on the flowing mass with 

simplifications using depth averaging techniques 
(Savage and Hutter 1989, 1991). 

In this paper, an analytical model based on energy 
conservation is formulated on a macroscopic scale. 
Compared with the existing depth-averaged continuum 
models, deformation work and internal energy dissipation 
are introduced into the governing equations of the new 
model. Model verifications are undertaken by comparison 
of numerical predictions with analytical solutions. Results 
of back-analysis of debris flow cases are presented 
following the model verifications. 

 
 

2 AN ANALYTICAL MODEL BASED ON ENERGY 
CONSERVATION LAWS 

 
Mathematical modeling of granular flows was originally 
introduced by Savage and Hutter (1989, 1991). Starting 
from the mass and momentum conservation equations 
for flow on a rough inclined plane and using the depth 
averaging process, Savage and Hutter (1989) derived 
one-dimensional, depth-averaged equations for the 
shallow free surface flow of dry granular materials. The 
Savage-Hutter model simplifies a moving granular mass 
as a cohesionless Coulomb frictional material. The 
relationship between shear and normal stresses on 
internal and rough bounding surfaces obeys the Coulomb 
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friction law. Multi-dimensional extensions of the Savage-
Hutter model have been formulated for analyzing dry 
granular flows over complex topography (Denlinger and 
Iverson 2004; Iverson and Denlinger 2001; Pudasaini 
and Hutter 2007; Wang et al. 2004). 

Hungr (1995) developed a dynamic model (DAN) for 
the runout analysis of rapid landslide from a geotechnical 
perspective. DAN was based on an explicit solution of the 
Saint Venant equations with the integration of a variety of 
constitutive relationships. The sliding mass in DAN was 
simplified as an equivalent fluid and represented a 
number of boundary and mass elements. Formulation of 
the governing equations was based on the principles of 
momentum conservation for the boundary elements. 
Mass conservation was applied to the mass elements to 
calculate changes in element depths. Extension of the 
DAN model to simulate fast moving landslides over three 
dimensional terrains was formulated and presented by 
McDougal and Hungr (2004).  

After a comprehensive review of existing models for 
debris flow simulation, a new computational model 
based on mass and energy conservation laws was 
formulated by Wang (2008). As shown in Figure 1, in the 
slice-based model the flowing mass is represented by an 
ensemble of contiguous slices which are subjected to 
gravitational forces, basal resistance, and internal forces. 
Forces acting on a typical slice of width b  and height h  
are shown in Figure 2. The governing equation for an 
individual slice can be formulated based on mass and 
energy conservation laws:  
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Figure 1. Representative slice in the slice-based model 

 

 
Figure 2. Forces acting on a typical slice 

Following the procedures of Savage and Hutter 
(1989), a Lagrangian finite difference scheme was 
developed for solving the equations of the slice-based 
model. Solution of the governing equations of rapid 
landslides requires determining the positions of the 
boundaries of each slice at time t . The numerical 
scheme assumes that all the variables involved in the 

calculation at t t+ ∆  are known from the previous time 

t , where t∆  is a time step interval. In the Lagrangian 
finite difference scheme, the governing equation for the 
slice k can be written as: 
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where k
E  is the kinetic energy of slice k , 

k
W&  is the 

sum of the rate of the work done by body force, surface 
force, and energy dissipation due to the deformation of 

slice k . 
k

E  and 
k

W&  are determined from equations [3] 

and [4], respectively. 
The constitutive law and assumptions regarding the 

interslice forces and deformation work are required to 
calculate the rate of work in equation [4]. In debris flow 
simulations, a frictional model is generally used as a 
constitutive law to calculate bases’ shear resistance. The 
lateral pressures can be approximated as a product of 
hydrostatic pressure and the coefficient of lateral 
pressure. The lateral stress coefficient can be active, 
passive, or hydrostatic (the coefficient of lateral stress is 
equal to 1) based on the local strain rate (velocity 
gradient) of a slice in the longitudinal direction. The 
values of lateral stress coefficients for a frictional 
material are calculated using the Rankine equation. 

Deformation of the slice in two dimensions is 
simplified as a pure shear deformation and the 
deformation work rate is approximated by: 
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∂
 is the mean strain rate. Following the conventions of 
stress and strain representation usually adopted in 
geotechnical engineering, negative signs have been 
introduced in order that compressive stresses and 
compressive strains are positive quantities. For an 
incompressible fluid: 
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stresses calculated using the following equations: 
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K  is calculated by averaging the coefficients 
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This model based on energy conservation laws has 
been tested against analytical solutions (Wang, 
Morgenstern, and Chan 2010). Simulations of simple 
granular flows have also been undertaken to examine the 
plausibility of the model and applicability of the numerical 
scheme (Wang 2008; Wang, Morgenstern, and Chan 
2010). Results of the numerical tests indicate that the 
model based on energy conservation laws is robust and 
applicable to modelling of flow slides and debris flows. 

 
3 MODEL VERIFICATION - COMPARISON 

BETWEEN NUMERICAL PREDICTIONS AND 
ANALYTICAL SOLUTIONS 

 
Mangeney et al. (2000) presented an analytical solution 
for a one-dimensional granular avalanche over a uniform 
slope of arbitrary inclination. The analytical solution 
describes the motion of a flow front of the dam break 
granular flow over an infinite, uniform slope with a 
Coulomb-type friction acting at the base of the flow. The 
performance and computational accuracy of the slice-
based model and associated numerical scheme were 
tested by comparing numerical predictions with analytical 
solutions of one-dimensional granular flows. It should be 
noted that the analytical solution of Mangeney et al. 
(2000) can be applied only to an idealized flow where the 
lateral earth pressure is assumed to be hydrostatic, the 
basal friction angle is not greater than the slope angle, 
and the flow never stops on the slope. 

Figures 3 and 4 present comparisons between the 
analytical solutions and the numerical simulations of 
dam break scenarios on horizontal and inclined planes, 
respectively. In both cases, an internal friction angle of 

zero was applied to provide the hydrostatic lateral 
pressure distribution in all the simulations. Figure 3 
shows the result of the dam break scenarios over a 
horizontal plane with zero basal friction. Figure 4 
presents comparisons between analytical solutions and 
numerical predictions for dam break scenarios on a 30⁰ 
slope with a 20⁰ basal frictional angle.  

 
Figure 3. Comparison between a numerical simulation 

and an analytical solution of a dam break in a horizontal 
plane 

 

Figure 4. Comparison between a numerical simulation 
and an analytical solution of a dam break on a 30⁰ slope 

 
As shown in Figures 3 and 4, the numerical 

predictions accurately reproduce the analytical solutions 
of the dam break-induced granular flows over both 
horizontal and inclined planes. 

 
4 MODEL APPLICATION – NUMERICAL ANALYSIS 

OF DEBRIS FLOWS ON NATURAL SLOPES 
 
The analytical model and numerical method presented in 
this paper was used to back analyze a well-documented 
debris flow case – the Tsukidate landslide. 

 
4.1 Overview of the Tsukidate landslide 

 
On May 26, 2003, an earthquake with a moment 
magnitude of 7.0 occurred in northern Japan. The 
earthquake triggered a number of landslides. One of the 
earthquake-induced large landslides was located in the 
Tsukidate area. The Tsukidate landslide originated from 

888



 

a failure in a gentle natural slope with an inclination of 
approximately 13.5°. The source area of the landslide 
was about 40 m wide and 80 m long, with a maximum 
depth of about 5 m. It was estimated that the landslide 
volume was about 8,100 m3. The deposition area was 
about 50 m wide and 120 m long. The apparent friction 
angle of the landslide was about 7.3⁰ (Fukuoka et al. 
2004; Uzuoka et al. 2005).  

Field investigation indicated that the soils in the 
source area were composed mainly of pyroclastic 
deposits. Soil samples were taken from the source area 
and deposition area of the landslide after the earthquake. 
The grain size analyses of soil samples taken from the 
landslide indicated that pyroclastic deposits involved in 
the landslide consisted of about 20% gravel, 50% sand, 
20% silt, and 10% clay. The gravel was mainly 
composed of pumice.  

Undrained cyclic ring-shear tests were conducted on 
samples from the landslide source area to study the 
triggering mechanisms of the Tsukidate landslide. The 
tests revealed that soils in the Tsukidate landslide were 
highly liquefiable and the apparent friction angle of the 
liquefied soils was about 7.5º (Fukuoka et al. 2004). It 
was concluded that the failure of the slope was the result 
of high pore-water pressures generated by seismic 
loading during the earthquake. After the original slope 
failure, persistent high pore water pressure due to 
widespread shear deformation within the soils resulted in 
the lower resistance and high mobility of the landslide 
(Fukuoka et al. 2004). 

 
4.2  Numerical simulation of the Tsukidate landslide 

 
Study of topographic features of the Tsukidate landslide 
was undertaken based on field measurements and 
survey data (Fukuoka et al. 2004; Uzuoka et al. 2005). 
The central longitudinal section of the landslide from the 
source area to the deposition area was used to obtain the 
sliding surface and pre-failure geometry in the dynamic 
analysis. 

Simulation of the Tsukidate landslide was carried out 
using an analytical model based on energy conservation. 
The frictional model was used as the constitutive law to 
calculate flow resistance. The same values for internal 
and basal friction angles were used in the analysis. The 
post-failure profiles of the landslides from the field 
observation and dynamic analyses of the Tsukidate 
landslide are presented in Figure 5. 

 

Figure 5. Numerical simulation of the Tsukidate landslide 
 
As shown in Figure 5, the front runout distance 

calculated from the dynamic analysis is approximately 
130 m, which is very close to the runout distance of 135 
m measured in the field. The back-calculated friction 
angle from the model based on energy conservation laws 
is 8°, which matches very well with the apparent friction 
angle of 7.5º measured from undrained ring-shear tests. 
 
5 CONCLUSION 
 
A new computational model is introduced for analyzing 
the motion of granular flows such as flow slides and 
debris flows. The new model is formulated based on 
mass and energy conservation laws. Comparison of 
numerical predictions and analytical solutions 
demonstrates the predictive power of the new model. The 
model was also applied to back-analyzing a well-
documented debris flow case. The back-calculated 
friction angle from the proposed model matches well with 
experimental results from ring-shear tests.    
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LIST OF SYMBOLS 
 

P  interslice force 
T   shear force acting on slice base 
N  normal force acting on slice base 

K  coefficient of lateral earth pressure 

V b h= ×  volume of slice 

b   width of slice 

h   height of slice 
u  mean velocity of slice 

θ   inclination of the slice base with respect to the 
horizontal 

L  subscript denoting slice property on the left side  
R  subscript denoting slice property on the left side 
 k  subscript denoting slice number 
m  mass of slice 
g  gravitational acceleration 

γ  unit weight of sliding mass 

ij ijeτ  deformation work rate  

xxe   mean horizontal strain rate of slice 

zze   mean vertical strain rate of slice 

xx
τ  mean horizontal stress 

zz
τ  mean vertical stress 
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