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ABSTRACT 
Recently there has been increasing need for quantitative analysis of advective heat transport in aquifers for projects 
such as in-situ thermal bitumen recovery and geothermal energy system design.  This paper presents the 
fundamentals of an advective heat transport analysis including estimation of heat transport velocity from aquifer heat 
capacity values and Darcy velocity.  A coupled groundwater and heat transfer numerical model is verified and used to 
illustrate the effect and importance of accounting for temperature dependent water viscosity when undertaking an 
advective heat transport analysis.  Simulation of thermal plume evolution through time in the case of an aquifer 
intersected by a hot thermal well illustrates the necessity of three-dimensional (3D) modelling in specific cases. 
 
 
RÉSUMÉ  
Récemment, il y a une demande pour des analyses quantitatives de transfert de chaleur avec advection dans les 
nappes phréatiques dans le cadre de projets tels que la récuperation in situ de bitume par chauffage et la conception 
de systèmes géothermiques.  Cet article présente les équations de transfert thermique avec advection ainsi que celle 
permettant d’estimer la vitesse du transfert en fonction de la capacité thermique de l’aquifer et de la vitesse de Darcy.  
Un modèle numérique couplé de transfert de masse et de chaleur a été vérifié et utilisé pour illustrer l’importance de la 
viscosité de l’eau dans ce type d’analyse. La simulation de l’évolution de panache thermique pour un aquifer avec des 
puits thermiques chauds démontre bien la nécessité d’une modélisation 3D dans certains cas.  
 
 
 
1 INTRODUCTION 
Quantitative analysis of advective-conductive heat 
transport is increasingly required for a variety of projects 
including geothermal energy systems and in-situ thermal 
bitumen recovery. 

Thermal wells are used in geothermal energy 
applications to transfer heat energy between surface 
facilities and the subsurface.  In these applications the 
ground around the thermal well acts as an energy 
repository where heat energy is seasonally extracted or 
stored.  Depending on the energy design of the 
geothermal energy system, groundwater flow in the 
vicinity of the geothermal well, or wells, may help or 
hinder the functioning of the system.  This may be 
especially true for larger geothermal energy installations 
utilizing multiple thermal wells.  In these cases, excess or 
deficit heat plumes transported by groundwater may 
negatively impact down-gradient thermal wells resulting 
in underperformance of the overall geothermal energy 
system. 

In Alberta, vast bitumen reserves are located in sand 
deposits, 90% of which are too deep for open pit mining.  
To access this resource, in-situ thermal techniques such 
as cyclic steam stimulation (CSS) and steam assisted 
gravity drainage (SAGD) are used to extract the bitumen.  
Both of these technologies utilize thermal wells that are 
heated in excess of 200 °C and which intersect 
quaternary aquifers.  The heat may cause geochemical 
changes such as elevated dissolved constituent 
concentrations by dissolution of soil minerals.  Although 
the exact geochemical changes that may occur when 

aquifer groundwater is heated and cooled are still being 
investigated, it is nonetheless important to determine the 
time evolution of the heat transport from these thermal 
wells. 

In practice the terms “advection” and “convection” 
can lead to confusion.  The term “advection” is used by 
hydrogeologists to refer to the component of mass or 
heat transport that occurs by the bulk motion of flowing 
groundwater.  Mechanical engineers dealing with heat 
transfer in porous media refer to this same process as 
“forced convection”, which is distinct from “passive 
convection”.  The latter occurs when fluid flow is 
established by fluid density variations within a system, 
typically caused by a heterogeneous temperature 
distribution.  Herein, the terms “advection” and 
“convection” (short for “forced convection”) may be used 
synonymously. 

This paper presents the concept of heat transport 
velocity, which is useful for quickly calculating the 
expected heat transport distance along a groundwater 
flow path.  To understand how the heat transfer velocity 
is derived, the governing equations for groundwater flow 
and convective-conductive heat transport are presented 
first as background information.   

A finite element model based on the aforementioned 
governing equations was created and used to compute 
advective heat transport.  Verification of the numerically 
computed results is demonstrated by comparison with an 
analytic solution and by comparison with the thermal 
plume transport distance based on the heat transport 
velocity.   
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The numerical model was used to assess the effect of 
temperature dependent water viscosity on advective heat 
transport.  The model was also used to demonstrate the 
necessity of considering all three spatial dimensions 
when computing advective heat transport in specific 
cases such as a thin confined aquifer intersected by a 
vertical thermal well.   
 
 
2 HEAT TRANSPORT VELOCITY 
 
When dealing with advective heat transport situations, it 
is quite beneficial to have some estimate of the expected 
travel velocity of the thermal plume.  This can be used in 
the field when deciding on locations of monitoring wells, 
or in simple cases to verify that a numerical model of 
advective heat transport is computing correct results.   

The derivation of the heat transport velocity comes 
from consideration of the governing equations for 
groundwater flow and convective-conductive heat 
transfer as outlined in the following sections.  The 
governing equations presented here were also solved 
using a finite element model as discussed later. 

 
2.1 Steady-State Groundwater Flow Equation 
 
Steady-state groundwater flow is governed by the 
following partial differential equation (PDE):  
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Where: 
H = groundwater head (m)  
KH = isotropic saturated hydraulic conductivity (m/d) 
grad() = gradient operator 
div() = divergence operator 
 
Units shown for the variables in the equations are 

typical units used in the work presented herein; however, 
generally any consistent system of mass, length and 
time units could be used. 

In Equation 1, the gradient and divergence operators 
can be expanded as: 
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Where: 
x = a spatial dimension 
i = 1, 2 or 3 subscripts refer to spatial dimension 

Hq
v

 = hydraulic flux (Darcy velocity) vector 

 

The PDE for steady-state groundwater flow 
(Equation 1) essentially states that groundwater flow into 
an elemental volume of the porous medium equals the 
flow out of the storage medium at any point in time.   

It should be noted that the hydraulic conductivity is a 
function of the permeability of the porous medium and 
the water viscosity.  Therefore the hydraulic conductivity 
in Equation 1 is a function of groundwater temperature 
because water viscosity is temperature dependent. 
 
2.2 Convective-Conductive Heat Transport Equation 
 
The following PDE describes transient convective-
conductive heat transport in a saturated porous medium 
(Neild and Bejan, 2006): 
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Where: 
T = temperature (°C) 
KT = thermal conductivity (kJ/m-d-°C) 
CW = heat capacity of water (kJ/m3-°C) 
CM = heat capacity of porous medium (water and soil 

grain solids combined) (kJ/m3-°C) 
QT = heat flux source/sink (kJ/m3-d) 
t = time (days) 
 
The first and second terms on the left-hand-side of 

Equation 5 represent conductive (diffusive) and 
convective (advective) heat transport, respectively.  The 
term on the right-hand-side represents the change in 
storage of heat within an elemental volume of porous 
medium over time.  Note that if the Darcy velocity were 
zero, then there would be no convective heat transport 
and Equation 5 would describe only conductive heat 
transport through time.  

The heat capacity of a saturated porous medium is 
computed as the volumetric weighted average of the heat 
capacities of the soil grains and the water: 

 
 

WSM CnCnC ⋅+⋅−= )1(  [6] 

 
Where: 
CS = heat capacity of soil grains (kJ/m3-°C) 
n = porosity  
 
Note that Equations 1 and 5 are coupled via the 

Darcy velocity and therefore must be solved 
simultaneously. 

 
3.1 Groundwater and Heat Transport Velocities 
 
The Darcy velocity (Equation 4) represents the hydraulic 
flux of water across a unit area of porous medium.  The 
average linear groundwater flow velocity is distinct from 
the Darcy velocity in that it represents the advective 
transport rate of an inert chemical (conservative tracer) 
introduced into the groundwater flow field.  A 
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conservative tracer does not chemically react or 
absorb/desorb on soil grains.  The average linear velocity 
is higher than the Darcy velocity because part of the 
cross-sectional flow area perpendicular to the flow 
direction is occupied by solid soil grains.  The average 
linear velocity is defined as: 
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The average linear velocity serves as an upper bound 

of the heat transport velocity since advective heat 
transport is analogous to chemical diffusive-advective 
transport in porous media.  Heat cannot transport 
advectively faster than the groundwater flows through the 
soil.  If the soil grain solids had zero heat capacity, 
(which is not physically possible), then heat transport 
would transport exactly like a conservative tracer.  Since 
the soil grains have a non-zero heat capacity, it is clear 
that the heat transport velocity must be less than the 
average linear flow velocity.  It is also clear that the heat 
transport velocity depends on the porosity as well. 

To determine the expected heat transport velocity, it 
is necessary to again consider the governing PDE that 
describes convective-conductive heat transport.  
Equation 8 below is identical to Equation 5 presented 
earlier except that the heat source/sink term is zero and 
all terms have been divided by the heat capacity of the 
porous medium, CM.   
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When the PDE is expressed in this way it can be 

seen that the heat (thermal) transport velocity is given 
by: 
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Instructively, note that in Equation 9 when porosity is 

set to one, (physically impossible), the heat transport 
velocity equals the Darcy velocity.  Furthermore, if the 
heat capacity of the soil grains is set to zero, (also 
physically impossible), then the heat transport velocity 
would equal the average linear velocity.   

Knowing that the heat capacity of water varies 
relatively little as a function of temperature, and knowing 
that the heat capacity of soil grains also varies relatively 
little as a function of the typical mineralogy of porous 
media, it is possible to roughly estimate the ratio of the 
heat capacities (or heat transport factor) in Equation 9.  

Using the relevant soil and water properties in 
Table 1, the heat transport velocity was computed using 
Equation 9 as a function of porosity.  Figure 1 compares 
the calculated heat transport velocity as a function of 
porosity.  Average linear velocity is also shown for 

comparison.  Note that the Darcy velocity in Figure 1 is 
normalized to a unit velocity.   

At a typical porosity of 25% and using the heat 
capacity values stated earlier, the heat transport velocity 
is 1.60 times the Darcy velocity.  Furthermore, the heat 
transport velocity has only slight variation over the range 
of porosity values for typical soils as is evident in 
Figure 1.  For example, the relative heat transport 
velocity for porosities of 15% and 40% are 1.74 and 
1.43, respectively.  Therefore for practical purposes, heat 
transport velocity can be roughly estimated as 1.6 times 
the Darcy velocity for a wide variety of soils in the 
absence of more detailed information. 
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Figure 1.  Comparison of Groundwater Velocities as a 
Function of Porosity 
 
 
3 NUMERICAL MODEL VERIFICATION 
 
The coupled PDEs for steady-state groundwater flow 
(Equation 1) and convective-conductive heat transport 
(Equation 5) were solved using a finite element program.  
The numerical results were verified as correct by 
comparing them against an analytic solution in one case 
and in another case by comparison to the hand-
calculated heat transport distance based on heat 
transport velocity from Equation 9. 
 
3.1 Comparison to an Analytic Solution 
 
An analytic solution for convective-conductive heat 
transfer available in Hoffman, 2001, was used to verify 
correct setup and computational capability of the finite 
element model.  The analytic solution is for a one-
dimensional fluid flow case where fluid is instantaneously 
forced through a porous media layer of 1 cm thickness at 
a Darcy velocity of 25 cm/s.  The thermal diffusivity of 
the layer was 0.01 cm2/s.  In case the reader is not 
familiar with thermal diffusivity, it is simply the ratio of 
thermal conductivity to heat capacity.   

Initially across the porous medium layer there is no 
fluid flow but there is a temperature differential from 0 °C 
at the flow inlet side to 100 °C at the flow outlet side.  
Accordingly, there is a steady-state linear temperature 
gradient across the layer from 0 °C to 100 °C before the 
fluid flow starts. 
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At time zero, fluid begins flowing at the specified rate 
and as it does so, it carries heat downstream towards the 
outlet side of the porous layer and thus changes the 
temperature profile across the layer.  The boundary 
temperatures are maintained at 0 °C and 100 °C at the 
inlet and outlet sides, respectively.  This causes the 
applied heat at the fluid outlet side to diffuse upstream 
against the fluid flow.  Eventually a steady-state is 
reached whereby the temperature profile across the layer 
does not change with time. 

The analytic solution presented in Hoffman, 2001, 
enables calculation of the temperature profile across the 
porous layer at any time after fluid flow is started, and 
also includes a simplified calculation of the temperature 
profile at thermal steady-state.  The time-dependent 
analytic calculation is somewhat cumbersome to 
complete and is therefore not included here. 

Figure 2 presents numerically computed temperature 
profiles across the porous layers at various times.  The 
analytically computed steady-state temperature profile is 
also plotted for comparison.  As shown in the plot, the 
numerically computed temperature profile at 25 seconds 
matches almost exactly to the numerically computed 
profile.  It is thus evident that numerical model properly 
computes convective-conductive heat transport 
temperatures in this case.  
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Figure 2. Comparison of Analytic and Numerical 
Solutions 
 

 
3.2 Comparison to Expected Heat Transport Velocity 
 
Another verification case was analyzed to compare the 
numerically computed heat transport distance to that 
expected based on the heat transport velocity as 
described earlier.   

In this case a 1D horizontal groundwater flow field 
was established in a 2D modelling domain with 
groundwater flow from left to right.  The parameters 
presented in Table 1 were used in this analysis.  The 
parameters chosen for this analysis are representative of 
a sand/gravel aquifer and were selected to provide round 
numbers to facilitate comparison with the numerical 
solution.  In particular, note that the expected heat 
transport velocity in this case is 0.08 m/d.  

Table 1: Analysis Parameters for Heat Transport Velocity 
Verification Case 
 
Parameter Value 

Hydraulic Conductivity (m/d) 5.0 

Hydraulic Gradient (m/m) 0.01 

Darcy Velocity* (m/d) 0.05 

Porosity 0.25 

Average Linear Groundwater Velocity (m/d) 0.20 

Heat Capacity of Water (kJ/kg-°C) 4200 

Heat Capacity of Soil Grains (kJ/kg-°C) 2100 

Heat Capacity of Saturated Aquifer* (kJ/kg-°C)   2625 

Ratio of Heat Capacities* (Water / Sat. Aquifer) 1.60 

Expected Heat Transport Velocity* (m/d) 0.08 

Modelling Domain Length (m) 160 

Thermal Conductivity of Saturated Aquifer(kJ/d-m-°C) 100 

Modelling Domain Half-Width (m) 80 

* Derived parameter 
 
 

A portion of the domain geometry and the initial 
conditions in the numerical model are shown in Figure 3.  
Initial temperatures were specified using a Gaussian 
distribution with a peak temperature of 100 °C centered 
at northing/easting coordinate (0,0) dropping to 0 °C 
away from the peak.   Use of a smooth and physically 
realistic initial temperature distribution was done to avoid 
numerical dispersion errors which occur when an 
unrealistic point temperature value is specified at time 
zero.  The temperature contours in Figure 3 range from 
10 to 100 °C, therefore the white areas indicate a 
temperature between 0 and 10 °C. 

It is important to note that the exact spread of the 
initial temperature distribution is not important in this 
analysis because the computed value of interest is the 
downstream movement of the thermal plume peak 
temperature with time. 

Symmetry along the centreline of the flow field was 
utilized to reduce computational expense.  As indicated 
in Table 1, the half-width of the model domain was 80 m, 
although in Figures 3 and 4 only part of the domain half-
width is shown. 

The groundwater flow is steady-state therefore the 
hydraulic head at all times drops linearly along the 
easting axis with a constant hydraulic gradient as 
indicated in Table 1.  The groundwater flow direction is 
indicated in the Figures 3 and 4 by the groundwater flow 
path lines as indicated with arrows. 

Figure 4 shows the numerically computed thermal 
plume after 800 days.  At this time the peak temperature 
has reduced from 100 °C to between 50 °C and 60 °C 
and the radius of the 10 °C isotherm has increased from 
about 18 m to 21 m.  Most importantly, the temperature 
peak has moved from an easting of 0 m to between 60 m 
and 65 m. 
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Figure 3. Initial Conditions for Heat Transport Velocity 
Verification Case 
 

Figure 4. Temperature Distribution after 800 Days for 
Heat Transport Velocity Verification Case 
 
 

A better view of the computed temperature data along 
the centreline of the flow at various times is provided in 
Figure 5.  The figure also shows the expected location of 
the peak temperature based on the heat transfer velocity 
value presented in Table 1.   

Inspection of Figure 5 shows that there is excellent 
agreement between the expected and numerically 
computed peak temperature locations.  It is noted that at 
later times, such as 800 days, the numerically computed 
peak temperature downstream distance is on the order of 
1 m less than the expected value.  This is considered to 
be likely a result of numerical dispersion.  It is therefore 
concluded that the numerical model correctly computes 
the expected heat transfer velocity with some small 
unavoidable error likely caused by numerical dispersion. 
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Figure 5. Comparison of Expected and Numerically 
Computed Heat Transport Velocities 
 
 
 
 
 
 

 
4 TEMPERATURE DEPENDENT WATER 

VISCOSITY 
 
4.1 Water Viscosity Variation with Temperature 
 
The PDE for steady-state groundwater flow (Equation 1) 
includes the hydraulic conductivity of the porous medium 
as a material property.  Hydraulic conductivity is a 
function of both the permeability of the porous medium 
and water properties as given by (Freeze and Cherry, 
1979): 

 

µ

ρgk
K

H
=  [11] 

 
Where: 
KH = hydraulic conductivity (m/d) 
k = permeability (m2) 
ρ = density of water (kg/m3) 

g = gravitational acceleration (9.81 m/s2) 
µ = dynamic viscosity (Pa·s) 

 
For convective heat transport calculations, a change 

in fluid properties as a function of temperature will have a 
corresponding effect on the hydraulic conductivity. 

Water density does not vary appreciably as a function 
of temperature.  For example, water density at 100 °C is 
958 kg/m3, which is only 4% less than the maximum 
density of 1000 kg/m3 at 4 °C.  Therefore changes to 
water density as a function of temperature were 
considered insignificant and were thus ignored in the 
modelling work presented later. 

Water viscosity as a function of temperature is given 
by (Likhachev, 2003): 
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Where: 
T = temperature (°C) 

o
µ = 2.4055×10-5 Pa·s 

E = 4.753 kJ/mol 
R = 8.314 J/°K-mol 
θ = 139.7 °K 
 
Figure 6 shows a plot of water viscosity versus 

temperature from 0 °C to 200 °C.  Values are shown 
above 100 °C because the boiling (flash) point of water 
increases with pressure.  As shown in Figure 6, the 
viscosity decreases by a factor of almost 12 from 0 °C to 
200 °C. 

Figure 7 shows the relationship between normalized 
hydraulic conductivity and temperature over the same 
temperature range.  The normalized hydraulic 
conductivity refers to a unit hydraulic conductivity value 
at a reference temperature, in this case 4 °C, which is a 
typical aquifer temperature in Canada.  As shown in the 
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plot, the hydraulic conductivity increases more than an 
order of magnitude over the temperature range shown. 
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Figure 6. Water Viscosity versus Temperature 
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Figure 7. Normalized Hydraulic Conductivity versus 
Groundwater Temperature 
 
 
4.2 Effect on Groundwater Flow 
 
To help understand the effect of the coupling between the 
thermal and hydraulic fields caused by temperature 
dependent water viscosity, an analysis was performed 
using the all the same model parameters as described 
earlier for the expected heat transport velocity verification 
case (Figures 3 & 4).  The only difference between that 
analysis and the one presented here was that the 
viscosity and thus the hydraulic conductivity was made a 
function of temperature. 

The computed temperature distribution and 
groundwater flow paths after 800 days using temperature 
dependent water viscosity are shown in Figure 8.  This 
figure is very informative.  It is noted that the 
groundwater preferentially flows through the thermal 
plume because of its locally increased hydraulic 
conductivity.  Furthermore, the preferential flow causes 
the peak temperature of the thermal plume to transport 
downstream at a faster rate and results in the plume 
taking an elliptical shape with the peak temperature 
located on the downstream side of the plume. 

Figure 9 shows the temperature profiles along the 
flow centreline at various times.  For comparison, this 
plot also shows the temperature profiles at the 
corresponding times for the case using a constant water 
viscosity.  The plot shows that the preferential 
groundwater flow through the thermal plume causes the 
temperature distribution within the plume to be skewed 

toward its leading (downstream) edge.  Interestingly, the 
peak temperature is not affected in this case by the 
preferential flow through the plume.   

Based on a travel distance of the peak temperature of 
about 100 m in 800 days (Figure 9), the transport 
velocity of the temperature peak averages 0.125 m/d 
over this time period.  This value is 2.5 times greater 
than the average Darcy velocity for this case of 0.05 m/d.   
For comparison, recall that for the case using constant 
water viscosity, the transport velocity of the temperature 
peak was 1.6 times the Darcy velocity.   

It is also instructive to note that the transport velocity 
of the temperature peak (0.125 m/d) is in this case 0.625 
times that of the average linear groundwater velocity 
(0.20 m/d).  This indicates that groundwater inside the 
thermal plume moves faster than the temperature peak.  
The groundwater thus flows through the thermal plume, 
picking up heat from soil grains, transporting it 
downstream, and “depositing” it by warming soil grains.  
The groundwater thus advances the leading edge of the 
thermal plume faster than would occur via conductive 
heat transfer alone. 
 

 
Figure 8. Temperature Distribution after 800 Days using 
Temperature Dependent Water Viscosity 
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Figure 9. Temperature Profiles along Flow Centreline 
using Temperature Dependent Water Viscosity 
 
 
5 HEAT TRANSPORT IN CONFINED AQUIFERS 
 
Advective heat transport can be adequately modelled in 
2D if the aquifer is thick relative to the length of the 
thermal well that penetrates it.  However, where a 
thermal well penetrates a relatively thin aquifer confined 
above and below by aquitards, then vertical heat loss 
from the aquifer to the aquitards will attenuate transport 
of the thermal plume in the aquifer.  In this case a 3D 
model is necessary.   

1069



As an illustrative example, a 20 m thick confined 
sand/gravel aquifer was modelled in 3D using the 
parameters presented in Table 2.  A single thermal well 
at 200 °C was operated for the first 5 years of the 15 
year simulation period.  Note that in this case the aquifer 
Darcy velocity, average linear velocity and the heat 
transport velocity were 10, 40 and 16 m/yr, respectively.   

 
 

Table 2: Analysis Parameters for Thin Confined Aquifer 
Case 
 
Parameter Value 

Aquifer Hydraulic Conductivity (m/s, m/d) 7.5x10-4, 65 

Aquitard/Aquifer Hydraulic Conductivity Contrast 10-4 

Horizontal Hydraulic Gradient – Constant (m/m) 0.00042 

Darcy Velocity * (m/d, m/yr) 27x10-3, 10 

Porosity 0.25 

Average Linear Groundwater Velocity*  (m/d, m/yr) 110x10-3, 40 

Heat Capacity of Water (kJ/m3-°C) 4200 

Heat Capacity of Soil Grains (kJ/m3-°C) 2100 

Heat Capacity of Sat. Porous Medium* (kJ/m3-°C)   2625 

Ratio of Heat Capacities* (Water / Sat. Aquifer) 1.60 

Heat Transport Velocity* (m/d, m/yr) 44x10-3, 16 

Thermal Conductivity (kJ/d-m-°C, W/m-°C) 250, 2.9 

Aquifer Half-Thickness (m) 10 

Aquitard Thickness (m) 50 

Depth to Aquifer – Nominal (m) 170 

Pressure in Aquifer  – Nominal (kPa) 1660 

Water Flash Temp. at Aquifer Depth – Nominal (°C) 200 

Insitu Temperature at Aquifer Depth – Nominal (°C) 4 

Thermal Well Temperature (°C) 200 

Thermal Well Operating Time (years) 0 to 5 

Total Simulation Time (years) 15 

* Derived parameter.  
Unless otherwise stated in the above, material properties are same 
for both the aquifer and the vertically adjacent aquitards. 
 
 

The thermal plume at 5, 7, 11 and 15 years is 
presented in Figures 10 to 13.  Specifically the plots 
show the location of the 10, 20 and 50 °C isotherm 
surfaces.   

For orientation, the thermal well is located along the 
z-axis (at x=0, y=0). Note that to reduce computational 
expense, symmetry was utilized in the analysis.  A 
horizontal symmetry plane exists at the mid-elevation of 
the aquifer and a vertical symmetry plane exists parallel 
to the groundwater flow path intersecting the thermal 
well.  Therefore the modelling domain consists of a 10 m 
half-thickness horizontal aquifer overlain by 50 m thick 
aquitard layer. 

 
 

 
Figure 10. Thermal Plume at 5 Years 
 
 

 
Figure 11. Thermal Plume at 7 Years 
 
 

 
Figure 12. Thermal Plume at 11 Years 
 
 

 
Figure 13. Thermal Plume at 5 Years 
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Steady-state groundwater flow parallels the x-axis 
which is established by a constant hydraulic gradient 
applied across the x-minimum and x-maximum planes of 
the model.  There is therefore no component of 
groundwater flow in the y- or z-directions.  The aquitard 
hydraulic conductivity is 4 orders of magnitude lower 
than that of the aquifer. 

Figure 10 shows the thermal plume after 5 years 
corresponding to the end of thermal well operations.  In 
the aquitard the low groundwater flow velocity results in 
diffusion dominated heat transport as evidenced by the 
near circular shape of the isotherms in the x-y plane.  In 
contrast, the isotherms in the aquifer have an elliptical 
shape consistent with advection dominated heat 
transport.   

Heat flow is perpendicular to the isotherm surfaces.  
Figure 10 shows that heat is transferred vertically from 
the aquifer to the aquitard downstream of the thermal 
well.  In contrast, heat flows from the aquitard to the 
aquifer just upstream of the thermal well. 

It is worth noting that the hand-calculated heat 
transfer velocity in this case is 16 m/year and that after 
5 years the first heat from the thermal well would be 
expected to have travelled roughly 80 m downstream.  
Figure 10 shows that after 5 years the 10 °C isotherm is 
nominally 90 m downstream.  In this situation the 
influence of both temperature dependent water viscosity 
and vertical heat loss have opposite effects on the heat 
transport velocity.  It is therefore reasonable that the 
10 °C isotherm location and the heat transport distance 
based on the basic heat transport velocity are similar. 

After operation of the thermal well ceases at 5 years, 
the thermal plume continues moving downstream and 
the maximum plume temperature declines as heat is 
dissipated.  At the end of 7 years the peak temperature 
has dropped below 50 °C but remains above 20 °C as 
shown in Figure 11.  In fact, Figure 11 shows that the 
thermal plume is dividing into two separate warm water 
zones, one associated with the aquifer and the other 
associated with the aquitard.  At 11 years (Figure 12) the 
10 °C isotherm surfaces of these two zones have nearly 
separated completely.  After 15 years (Figure 13) the 
peak temperature in the aquifer has dropped below 10 °C 
while in the aquitard the maximum temperature remains 
between 10 and 20 °C. 

This example illustrates how a thermal plume evolves 
through time in a relatively thin aquifer.  It is noteworthy 
that even a simplified analysis such as this, using 
homogeneous and isotropic material properties in a 
basic aquifer/aquitard system with steady-state 
groundwater flow, transport of the thermal plume can 
only be calculated using a 3D numerical model. 

 
 

6 CONCLUSIONS 
 
Based on the work presented herein, it is concluded that 
heat transport velocity can be quickly hand-calculated 
based on the ratio of water heat capacity to the porous 
medium capacity multiplied by the Darcy velocity.  This 
heat transport velocity does not account for effects of 

temperature dependent water viscosity and only 
considers the velocity along a single dimension or 
conceptually along a flow stream tube. 

In practice, the heat transport velocity in an aquifer 
can be reasonably estimated as 1.6 times the Darcy 
velocity in the absence of better information. 

The governing equations presented were used to 
numerically compute advective heat transfer in steady-
state groundwater flow.  The numerical calculations were 
verified by comparison with an analytic solution and by 
comparison with the expected thermal plume transport 
distance based on the hand-calculated heat transport 
velocity. 

It is necessary to include the effect of temperature 
dependent water viscosity in advective heat transport 
models especially in cases with high temperatures at the 
heat source.  In these cases the thermal plume becomes 
a preferential groundwater flow zone and increases its 
transport velocity above the expected heat transport 
velocity. 

Finally, in some cases it is necessary to model heat 
transport cases in 3D.  In the case of a thin confined 
aquifer, 3D analysis is required to account for vertical 
heat transfer into the confining aquitards.  
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