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ABSTRACT 
Several optimization algorithms have been used with varying degree of success to estimate diffusion and retardation 
coefficients for the design of containment systems. Of these, Particle Swarm Optimization (PSO) algorithms stand out 
for their simplicity and efficiency; however, PSO algorithms suffer from convergence issues, particularly for the 
aforementioned inverse problem. Here, a novel algorithm is proposed by combining Big-Bang Big-Crunch algorithm 
with PSO to overcome convergence issues. The performances of a standard PSO and the proposed algorithms are 
compared using synthetic data. The proposed algorithm is shown to outperform standard PSO and results in more 
accurate estimation of parameters from experimental data. 
 
 
RÉSUMÉ 
Plusieurs algorithmes d'optimisation ont été utilisés, avec des degrés variables de succès, pour estimer les coefficients 
de diffusion et retardement utilisés dans la conception des systèmes de confinement. Parmi ceux-ci, les algorithmes 
Particle Swarm Optimization (PSO) sont remarquables du fait de leur simplicité et de leur efficacité. Cependant, les 
algorithmes PSO souffrent de difficultés de convergence, particulièrement pour le problème inverse susmentionné. Un 
algorithme original est proposé ici en combinant les algorithmes Big-Bang Big-Crunch et PSO pour surmonter les 
difficultés de convergence. Les performances d'un PSO standard et des algorithmes proposés sont comparées en 
utilisant des données synthétiques. L'algorithme proposé est montré être plus performant que l’algorithme PSO 
standard et conduit à des estimations plus précises des paramètres à partir des données expérimentales. 
 
 
 
1 INTRODUCTION 
 
Chemical contaminants are the main sources of soil and 
groundwater pollution. They originate from chemical 
industries and other contaminated sites. Contamination 
of the environment poses severe health issues to the 
inmates. The waste is encapsulated in liner system in the 
landfills to slowdown the migration of chemical 
contaminants. Similarly, vertical barrier systems are 
constructed in the subsurface to arrest the contaminants 
flow into the subsurface. Thus the importance of 
contaminant transport studies through barrier system is 
well recognized worldwide. Such studies help in 
designing contaminant barrier systems such as landfills 
and rehabilitation of the contaminated sites. The landfill 
liner implies any natural or factory manufactured low-
permeable material, to make diffusion as the dominant 
transport process, used for contaminant confinement 
applications in landfills. The design of these disposal 
sites (landfills) and vertical barrier systems requires 
consideration of the likely contamination of the 
surrounding ground-water systems in both the short and 
long term. Thus, accurate estimation of transport 
parameters through these contaminant barrier systems is 
of critical importance for the performance assessment of 
landfills and vertical barrier systems. The contaminant 
transport in these systems is approximated as a transient 
through-diffusion process wherein a finite mass of 
contaminant is available for transport through the liners 
of the landfills and finally into ground water systems. 
Generally, laboratory diffusion tests are conducted to 

estimate the design parameters of a proposed landfill 
system or to estimate the performance of an existing 
landfill system. These laboratory tests are conducted by 
maintaining conditions similar to those expected in the 
field, such as using the proposed barrier material and 
using a leachate as similar as possible to that expected 
in the facility. Design parameters are estimated by 
matching the theoretical concentration profile with the 
experimentally observed temporal or spatial variation of 
the concentration. In Geo-environmental engineering, this 
is commonly done using visual calibration techniques like 
Pollute (Rowe and Booker, 1998). A few studies also 
used the gradient-based optimization techniques for 
solving this inverse problem (Bell et al. 2002). The 
shortcomings of using the above techniques for 
contaminant transport problems have been well 
documented in (Bharat et al. 2008). Recently, the PSO 
algorithm has been used in geo-environmental 
engineering for solving inverse problems such as 
parameter identification (Bharat et al. 2009a) and 
constructing the past contaminant source history (Bharat 
et al. 2009b) and also shown the benefits of using PSO 
based solvers in obtaining good solutions. However, 
often times PSO, similar to other evolutionary 
algorithms, converges prematurely to local solutions. 
Especially in the application to contaminant transport 
problems, this is a major set-back as this causes not 
only improper parameter estimation but also a waste of 
huge computational effort (each fitness calculation 
involves an expensive time marching numerical 
computations of partial differential equations).  
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With this incentive, in this paper a new variant of PSO 
is presented to improve the efficiency of the algorithm for 
developing an inverse model for parameter estimation 
(Bharat and Sharma 2010). The proposed algorithm uses 
a new point on the search space in each iteration from 
the Big-Bang Big-Crunch (BB-BC) optimization concept 
(Erol and Eksin 2006). The modified PSO algorithm uses 
center of mass of the population using the fitness and 
locations of all the agents in addition to the fitness of 
individuals. The detrimental position update formula of 
global best particle in the standard PSO can be alleviated 
using this additional information in the search space as 
the center of mass of the population changes randomly 
for every generation.   
 
 
2 CONTAMINANT TRANSPORT PROBLEM 
 
Consider an engineered barrier system with contaminant 
cells, liner and the leachate collection system. The net 
change in the mass of solute in the saturated permeable 
stratum beneath the landfill at any time will be equal to 
the flux into the permeable stratum from the landfill. The 
theoretical estimation of contaminant concentration in the 
landfill requires the solution of the governing transport 
equations. 
 
2.1 Mathematical Formulation 
 
The concentration at any time instant at the upper 
boundary can be represented as 
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where 

s
H  is the equivalent height of source reservoir, 

calculated as the volume of source solution divided by 
the cross-sectional area of the liner sample perpendicular 
to the direction of diffusion, D  is the effective diffusion 
coefficient, c  is the concentration of the solute in pore 
fluid at time t , spatial location x , n  is the soil porosity 

and 
0

c  is the initial contaminant concentration.  

Similarly, the concentration at any time instant at the 
lower boundary can be represented as: 
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where, 

c
H  is the equivalent height of the collector 

reservoir. 
The one-dimensional governing diffusion equation 

through soil can be expressed as 
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where α  is the capacity factor represents the sorption of 
contaminants on to the surface of the clay particle. 
 
The initial condition in general encountered is 
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Solute concentration at any spatial location and time 

instant ( ),c x t  can be obtained by solving the governing 

equation [3] along with initial and boundary conditions [4] 
through [6], simultaneously. 

 
2.2 Numerical Solution 
 
Crank-Nicolson (C-N) numerical solution is used to 
discretize the governing equation as given below: 
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Simplifying further by separating the concentration 

terms of 
thn and 1

thn + time levels, 
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Finite difference approximation of the boundaries ([2] 

and [3]) using fully implicit scheme gives the following 
equations 
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Substituting values of 
1

1

nc +
and

1n

M
c +

from [7] and [8] into 

[6], the equation at 2i =  becomes, 
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After simplification it gives, 
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To obtain the concentration vector in the 1

thn + time level, 
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The tridiagonal matrix is solved using Thomas 

algorithm which uses Gauss elimination technique. The 
aforementioned forward model estimates the theoretical 
contaminant concentration c(x,t) when the design 
transport parameters are known. However, the laboratory 
contaminants transport experiments and the field 
monitoring systems in the landfills yield the spatial or 
temporal concentration of contaminants. The design 
transport parameters need to be determined from these 
observations by inverse analysis. In the inverse analysis 
an objective function is constructed as shown in the 
equation [15] which helps as a guide to find the best 
parameters. 
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where ( ),in anal i
c t  and ( ),out anal i

c t  are the contaminant 

concentrations data obtained from analytical solution and 

( ),in num i
c t  and ( ),out num i

c t  are the concentrations data 

obtained by numerical model at given values of 
,  1,2,...

i
t i N= , theoretical time. 

The forward model (simple explicit numerical 
procedure) was integrated with standard PSO for the 
estimation of design parameters in our earlier work 
(Bharat et al. 2008). However, the success rate of the 
solver is not striking due to premature convergence of the 
standard PSO algorithm. The detailed description of PSO 
algorithm is presented in the next section. 

 
 

3 PSO ALGORITHMS 
 
3.1 PSO Description 
 
PSO is a class of derivative-free, population-based 
computational methods which is a recent addition to 
nature inspired algorithms. The foundation of PSO is 
based on the social behaviors of animals such as 
flocking of birds and schooling of fishes (Kennedy and 
Eberhart 1995). In PSO, each particle of the population is 
thought of as a collision-free bird and used to represent a 
potential solution for the problem. In this method each 
agent representing a potential solution moves in the 
search space and adaptively updates its velocity and 
position according to its own flying experience and the 
flying experience of its neighbors, aiming at a better 
position for itself. Moreover, each individual has a 
memory, remembering the best position of the search 
space it has ever visited. Thus, its movement is an 
aggregated acceleration towards its best previously 
visited position and towards the best individual of a 
topological neighborhood.  

PSO starts with the random initialization of a 
population of individuals in the search space and works 
on the social behavior of the particles in the swarm. The 

position of 
thi particle and

thj dimension is represented 

as ( )
→

= 1 2, ,...., .ij i i iDx x x x . The best position of the 
th
i  

particle in its history that gives the best fitness value is 

represented as ( )
→

= 1 2, ,....i i iDijp p p p . The best particle 

among all the particles in the whole population and in the 

entire history is represented by ( )
→

= 1 2, ,....g g gDgjp p p p . At 

each iteration step 1k +  the position vector of the 
thi  
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particle ( )1
ij

x k +  is updated by adding an increment 

vector called velocity ( )1
ij

v k +  as shown below 

 
→ → →

= +ij ij ijx x v  [16]  (13) 
 

The velocity of each individual is updated with the 
best positions acquired for all individuals over 
generations, and the best positions acquired by the 
respective individuals over generations. Updating is 
executed by the following formula: 
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where χ  is called constriction coefficient andω is the 
inertia weight introduced by Shi and Eberhart (1998) in 
order to improve the performance of the particle swarm 
optimizer. φ1  and φ2  are two positive values called 

acceleration constants. ( )1rand  and ( )2rand  are two 

independent random numbers that uniformly distribute 
between 0 and 1 and are used to stochastically vary the 

relative pull of  
→

ijp  and 
→

gjp . The personal best position 

of each particle and the global best position are updated 
after each generation (iteration). The positions of 
respective individuals are updated by every generation, 
and are expressed by the equation [17]. 
 
3.2 Shortcomings of Standard PSO and Its Variants 
 
A large number of theoretical studies (Clerk and Kennedy 
2002) have shown that the particles positions in standard 
PSO oscillate in damped sinusoidal waves until they 
converge to points in between their previous best 
positions and the global best positions discovered by all 
particles so far. If some point visited by a particle during 
this oscillation has better fitness than its previous best 
position (which is very likely to happen in many fitness 
landscapes), then particle movement continues, 
generally converging to the global best position 
discovered so far. All particles follow the same behavior, 
quickly converging to a good local optimum of the 
problem. However, if the global optimum for the problem 
doesn’t lie on a path between original particle positions 
and such a local optimum, then this convergence 
behavior prevents effective search for the global 
optimum. Many of the particles waste computational 
effort in seeking to move in the same direction (towards 
the local optimum already discovered), whereas better 
results may be obtained if various particles explore other 
possible search directions (Peram et al. 2003). 

A number of PSO variants have been proposed to 
overcome some of the above mentioned problems. The 
perturbed PSO algorithms are more thriving to overcome 
premature convergence and successfully applied solve 
inverse problems (Bharat et al., 2008). However, the 
performance of these algorithms is highly dependent on 
the perturbation coefficient which varies from problem to 

problem (Bharat, 2010). Thus finding an optimum value 
of perturbation coefficient for a given problem will not be 
practical in many situations. 
 
3.3 Big-Bang Big-Crunch Algorithm 
 
The Big Bang-Big Crunch (BBBC) optimization method 
(Erol and Eksin 2006) is built on two main steps: The first 
step is the Big Bang phase where candidate solutions are 
randomly distributed over the search space and the next 
step is the Big Crunch where a contraction procedure 
calculates a center of mass for the population. The initial 
Big Bang population is randomly generated over the 
entire search space just like the other evolutionary search 
algorithms. All subsequent Big Bang phases are 
randomly distributed about the center of mass or the best 
fit individual in a similar fashion. The detailed description 
of BBBC algorithm is given elsewhere (Erol and Eksin 
2006). Though the BBBC algorithm works in the same 
fashion as any other algorithm does, it lacks good 
exploration capabilities due to weak position update 
formula. Thus a hybrid algorithm was proposed which 
uses the personal best and global best positions of the 
agents into consideration to update the positions of the 
agents (Kaveh and Talatahari 2010). However, due to 
exclusion of velocity term in the hybrid BBBC (HBBBC) 
algorithm, it doesn’t tap the full advantage of original 
PSO algorithm offers. Thus, a new algorithm is 
presented which takes into account of centre of mass 
concept of BBBC algorithm and position update is 
performed using standard PSO algorithm.  
 
3.4  Proposed Algorithm 
 
The pseudo-code of the proposed PSO algorithm can be 
summarized as follows: 
 
Step1: Initialize the population by randomly distributing 

the agents on the search space 
 
Step2: Calculate fitness of all agents [15] 
 
Step3: Update the position of each agent using [16] and 

[17] 
 
Step4: Find the center of mass of the whole population 

using the following equation 
 

( ) =

=

⋅

= =
∑

∑

1

1

1

   j 1,2
1

N
k
ij

ik i
j N

i i

x
fit

x c

fit

    [18] 

 

where k
ijx  is the thj  component of the thi  solution 

generated in thk  generation and N is the population size. 
 
Step5: Compute the fitness of the center of mass point. 
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Step6: Compare the fitness’ of global best agent and 
center of mass point. Update the global best value using 
the greedy selection mechanism. 
 
Step7: Return to Step3. 
 
 
4 INVERSE ANALYSIS 
 
The goal of the present inverse model is to estimate a 
combination of mass transport parameters that 
minimizes the error [15] which serves as an objective 
function between the experimentally measured and 
theoretically computed concentration data.  
4.1 Parameter Setting 
 
In the solvers, the PSO algorithms are based on a 
population of 25 particles randomly distributed in the 
solution (parametric) space. The maximum number of 
generations is set to 200 in each run. Initially, the PSO 
studies used high values for acceleration coefficients. 
Although good results have been obtained on standard 
test functions, it is observed for the present problem that 
velocities quickly explode to large values, especially 
for particles far from their global best and personal best 
positions. Consequently, particles have large position 
updates, with particles leaving the boundaries of their 
search space. Thus, best set of PSO variables is found 
by empirical studies. It is observed that φ1 = φ2 = 0.5 is 
found to give good performance when χ = 0.6 and a 
linearly varying inertia weight ω  from 0.9 to 0.4 from the 
beginning to end of the search, are used. 
 
4.2 Performance assessment of Different Solvers 
 
To demonstrate and validate the inverse models 
developed using SPSO, HBBBC and PPSO algorithms, a 
synthetically generated data is used. The synthetic data 
of contaminant concentration is obtained by solving the 
forward problem using an assumed set of mass transport 
parameters -05

D=1.523 10×  and 34α = . This data with 
and without random noise is given as input to the solvers 
for finding the true design parameters. The performance 
of all the developed solvers on synthetic data is tested 
using 10 independent runs. Table 1 presents the best and 
the worst values, the tolerance and the success rate 
obtained for each solver. The result indicates that 
HBBBC and PPSO models achieve better success rate 
when compared with SPSO model. Though the 
performance of HBBBC and PPSO models is the same 
on synthetic data without noise, the superiority of PPSO 
model is exhibited when the noise is introduced to the 
data. Thus, it appears that the performance of the PPSO 
model is not influenced by the noise in the data which is 
expected in the experiments. Thus, this model is more 
reliable in estimating the accurate design parameters. 

The movement of the particles for HBBBC and PPSO 
inverse models is shown in Fig. 1 and 2. In the case of 
HBBBC model, the particles have quickly converged (in 
100 iterations) to near global optimum solution 
( -05

D=1.168 10×  and 45.063α = ) with a success rate of 

0.5. However, the PPSO algorithm continues to search 
till the maximum iterations of 200 and converged to 
global optimum solution ( -05

D=1.43 10×  and 34.805α = ) 
with a success rate of 0.7. 

 
4.3 Application to Experimental Data  
 
Laboratory data of (Barone et al. 1992) for transient 
through-diffusion and sorption of chloroform in clayey 
soil is used to estimate the design parameters from 
PPSO model. The best solution (fitting parameters) is 
estimated from 10 independent runs. The best solution 
obtained is 

05 2
11.509 10 cm secD

−= × and 12.3507α = with 0.0213
r

E = . 

The theoretical profile representing the temporal variation 
of solute concentration in the source and collector 
reservoir is obtained for the model parameters estimated 
by the PPSO model. This is plotted in Fig. 3 along with 
the experimental data. 
 

 

 
Fig. 1. Movement of the particles with HBBBC solver 
on synthetic data with 5% noise 
 
 

 
Fig. 2. Movement of the particles with the proposed 
solver on synthetic data with 5% noise 
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Fig. 3. The theoretical concentration data using the 
optimized parameters from the proposed solver and the 
input data of experimental observations 
 

 
 
 
5 CONCLUDING REMARKS 
 
In this paper a new inverse model based on particle 
swarm optimization algorithm is introduced for the 
parameter estimation of contaminant transport through 
liner material. A new point is introduced into the SPSO 
algorithm center of mass of the population. The 
developed solver thus tested on synthetic data and 
compared with the solvers based on SPSO and HBBBC. 
The proposed model outperforms its counterparts on 
synthetic data with and without the addition of random 
noise. Further, the model successfully was used to 
estimate the design parameters with good accuracy from 

the experimental data. Further work on improving the 
inverse model to enhance the success rate is in progress. 
 
 
REFERENCES 
 
Barone, F.S., Rowe, R.K. and Quigley, R.M. 1992. A 

laboratory estimation of diffusion and adsorption 
coefficients for several volatile organics in a natural 
clayey soil, Journal of Contaminant Hydrology 10:  
225–250. 

Bell, L.S.J., Binning, P.J., Kuczera, G. and Kau, P.M.H. 
2002. Rigorous uncertainty assessment in 
contaminant transport inverse modelling: a case 
study of fluoride diffusion through clay liners, Journal 
of Contaminant Hydrology,  57: 1-20. 

Bharat, T. V. 2010. A Novel Particle Swarm Optimizer 
with Individual-Level Decision Making Abilities. 
Advances in Engineering Software (under review). 

Bharat, T.V. and Sharma, J. 2010. Inverse modeling in 
geoenvironmental engineering using a novel particle 
swarm optimization algorithm. Lecture Notes in 
Computer Science (in print). 

Bharat, T. V., Sivapullaiah, P. V.  and Allam, M. M. 2008. 
Accurate parameter estimation of contaminant 
inverse problem using particle swarm optimization, 
Proceedings of Swarm Intelligence Symposium (IEEE) 
Sep 21-23, St. Louis, USA. 

Bharat, T. V., Sivapullaiah, P. V.  and Allam, M. M. 
2009a. Swarm intelligence-based solver for 
parameter estimation of laboratory through-diffusion 
transport of contaminants, Computers and 
Geotechnics 36: 984-992. 

Bharat, T. V., Sivapullaiah, P. V.  and Allam, M. M. 
2009b.  Swarm Intelligence Based Inverse Model for 
Characterization of Groundwater Contaminant 
Source, Electronic Journal of Geotechnical 
Engineering 14/B. 

Clerk, M. and Kennedy, J. 2002. The particle swarm-
explosion, stability, and convergence in a 
multidimensional complex space, IEEE Trans. 
Evolutionary Computation 6: 58–73. 

Erol, O.K., Eksin, I. 2006. A new optimization method: 
Big Bang–Big Crunch. Advances in Engineering 
Software 37, 106–111. 

Kaveh, A. and Talatahari, S. 2010. Optimal design of 
Schwedler and ribbed domes via hybrid Big Bang - 
Big Crunch algorithm. Journal of Constructional Steel 
Research 66 (3): 412-419. 

Kennedy, J, Eberhart, R.C. 1995. Particle Swarm 
Optimization: In: Proceedings of IEEE international 
conference on neural networks, Perth, Australia. 
1942–1948. 

Peram, T., Veeramachaneni, K. and Mohan, C. K. 2003. 
Fitness-distance-ratio based particle swarm 
optimization: in: Proceedings of Swarm Intelligence 
Symposium, pp. 174–181. 

Rowe R.K., Booker J.R. 1998. Pollute v.6.3.6 – 1-D 
Pollutant migration through a non- homogeneous soil. 
1983, 1990, 1994, 1997, 1998. Distributed by GAEA 
Environmental Engineering Ltd. 

Table 1. Performance of different inverse models on 
synthetic test data 

A Data  T S  
Best 

solution 
(D, R) 

Worst 
solution 
(D, R) 

SPSO 

Synthetic 
(without 
noise) 

10
% 

0.6 

1.4E-05, 
36.76 

(rmse = 
0.0038) 

1.1E-05, 
42.84 

(rmse = 
0.01255) 

Synthetic 
(5% 

noise) 

15
% 

0.3 

1.3E-05, 
37.3 

(rmse = 
0.0145) 

1.2E-06, 
141.2 

(rmse = 
0.0293) 

HBBB
C 

Synthetic 
(without 
noise) 

10
% 

0.8 

1.5E-05, 
34.0 

(rmse = 
0.0231) 

1.23E-05, 
42.8923 
(rmse = 
0.00891) 

Synthetic 
(5% 

noise) 

15
% 

0.5 

1.4E-05, 
37.396 
(rmse = 
0.0143) 

8.9E-06, 
63.0 

(rmse = 
0.012) 

PPSO 

Synthetic 
(without 
noise) 

10
% 

0.8 

1.5E-05, 
34.0 

(rmse = 
1.2E-8) 

1.2E-05, 
41.1 

(rmse = 
7.7E-3) 

Synthetic 
(5% 

noise) 

15
% 

0.7 

1.49E-5, 
34.0231 
(rmse = 

0.001366) 

1.1E-05, 
45.1 

(rmse = 
0.003) 
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