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ABSTRACT 
One of the distinguishing features of geotechnical reliability analysis, compared to other structural reliability analysis such 
as concrete and steel structures is material properties are different from site to site. The sources of uncertainties in 
reliability analysis are usually classified in four categories, namely physical uncertainty, model uncertainty, statistical 
uncertainty and gross error.  
The purpose of this study is to quantitatively evaluate the impact of physical uncertainty of soil on the differential 
settlement of circular shallow foundations on statistically homogeneous elastic ground and the stresses in a 1st

 

 degree 
indeterminate frame structures. The settlement and the differential settlement were predicted; the stresses had not 
exceeded 1.2 % increment of the homogenous conditions in the studied frame structure. 

RÉSUMÉ 
L'analyse de la fiabilité en géotechnique est complexe car les propriétés des matériaux sont différentes d’un site à 
l’autre, ce qui n’est pas le cas pour d'autres analyses de fiabilité structurale, telles que pour les structures métalliques ou 
en béton.  Les sources d'incertitudes dans l'analyse de fiabilité sont habituellement classées en quatre catégories, à 
savoir l’incertitude physique, l’incertitude du modèle, l’incertitude statistique et l’erreur brute.  
Le but de cette étude est d'évaluer quantitativement l'impact de l'incertitude physique du sol sur le tassement différentiel 
de fondations circulaires peu profondes dans un sol élastique statistiquement homogène et sur les contraintes dans une 
structure hyperstatique de 1er degré. Le tassement et le tassement différentiel ont été prédits; les contraintes n’ont pas 
dépassé 1,2% par rapport aux conditions homogènes dans la structure de charpente étudiée. 
 
 
 
1 INTRODUCTION 
 

In many of the textbooks in reliability design, the 
sources of uncertainties are classified in four categories, 
namely physical uncertainty, model uncertainty, statistical 
uncertainty and gross error (e.g. Thoft-Christensen and 
Barker, 1982). In the actual situation, it is observed that it 
is a combined result of all of these uncertainties. For 
example, there are differences between the accuracy of 
the prediction of the settlement of shallow foundations or 
the internal forces and the observations, and it is 
practically impossible to quantitatively identify each one of 
the four sources separately. 

Fenton and Griffiths (2002), Honjo et al. (2007), and 
others have studied the influence of the spatial variability 
on the settlement prediction. However, one may not find 
any research discussing the relationship between the 
spatial variability of soil and its effect on the structures. 
 
2 Objective and scope 
 

The objective of this study was to quantitatively 
evaluate the physical uncertainty impact on the internal 
forces of a frame (i.e. spatial variability of soil properties) 
based on by the differential settlement prediction of 
flexible circular shallow foundations on elastic medium. 
The soil property (i.e. elastic modulus), was modeled as a 
random field. The lognormal distribution was assumed for 
soil variability with various autocorrelation distances. The 

Poisson ratio of the soil was set to be a deterministic 
value. 
The resulting uncertainty in differential settlement due to 
spatial variability is evaluated by Monte Carlo simulation 
(MCS). Fenton and Griffiths (2002), Honjo et al. (2007), 
Jlilati and Honjo (2008) and others have studied the 
influence of the spatial variability on the settlement 
prediction. The methodology employed in this study is 
similar, which was based on the random field theory (e.g. 
Vanmarcke, 1977, 1983) combined with the finite element 
method (Smith and Griffiths, 1987). However, this study 
was extended to show the effects of differential settlement 
on bending moments and stresses in a frame structure. 
 
 
3 METHOD OF ANALYSIS 
4 Procedure of study 
 

Circular shallow foundations on elastic ground whose 
Young’s modulus, E, follow a homogeneous lognormal 
random field were assumed. The Poisson's ratio was 
assumed to be constant.  The settlement is calculated by 
the finite element method using axisymmetric condition 
and four nodes rectangular elements (Smith and Griffiths, 
1987). 

The procedure to evaluate settlement prediction 
uncertainty due to spatial variability is as follows: 



1) A homogeneous standard normal random field was 
generated whose mean was zero, standard deviation was 
1, and given autocorrelation distance (Shinozuka, 1971). 

2) The generated Gaussian random field (RF) was 
transformed to the lognormal random field with given 
mean and standard deviation.  In transforming the normal 
field to lognormal field, the autocorrelation distance was 
altered. However, it was not the exact value of the 
autocorrelation distance that the author was interested to 
study but the generated influences. The same procedure 
was employed in Fenton and Griffiths (2002). 

3) The transformed lognormal random field was 
assigned to the finite element mesh. Young's modulus is 
assumed to be semi-isotropic (ie. no changes in the soil 
properties in the horizontal direction but in the vertical 
direction only).  This assumption is justified due to much 
longer correlation distance to the horizontal direction 
compared to the vertical (e.g. Lumb, 1975). The ground’s 
depth was 10 m discrete to 20 cm thick elements in FEM. 
the generated Young’s modulus is assigned to each 
element. 

4) The settlement of two independent circular 
foundations, differential settlement between the two 
circular foundations, the reaction under the foundations, 
and the maximum and minimum bending moment in the 
frame structure on the specified load were computed. 

5) The steps 1 through 4 were repeated until a 
sufficient number of results were obtained to evaluate the 
uncertainty. 

The procedure above was repeated for different 
combinations of coefficient of variation of Young’s 
modulus, COVE

 

, and autocorrelation distance, a, while 
Poisson’s ratio was assumed to be a constant (v=0.3). 

5 Derivation of the solution 
 

 The soil variability interested in was assumed to consist of 
a heterogeneous but isotropic RF. Although soils generally 
exhibit a stronger correlation in the horizontal direction 
compared to the vertical, due to their layered nature, the 
degree of anisotropy is site specific (Fenton and Griffiths, 
2002) and this point will be treated in later stages. The 
generation procedure of a RF was described as follow 
(Shinozuka, 1972). The autocorrelation function of the RF was 
assumed to be an exponential type: 
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where, C(r) is an autocorrelation function of an isotropic RF, 
and r is the distance between two points, and a is the 
autocorrelation distance. 
Based on Wiener-Khintchine’s citation, the autocorrelation 
function, C(r), and the two-sided power spectrum function, 
S(ω), has the following relationships (Christakos, 1992) 
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Where, J0
 

 is Bessel function. By applying "Eq. 3" to "Eq. 1"  
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On the other hand, based on Laplace - Bessel transform: 
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where α, b, and c are real numbers, and Г is the Gamma 
function and it is defined as In case α = 0, "Eq. 5"  takes the 
form:  
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So "Eq. 6" becomes: 
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By assuming c=1/ θ, b=ω, and applying "Eq. 7" to "Eq. 4" 
 

   

3
2 2

2

1( )
12 ( )

S ω
πθ ω

θ

=
+

                  [8] 

 
Based on this power spectrum function and uniform random 
number Φ, a standard Gaussian random field Z(x1, x2

 

) can be 
generated as follows: 
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Where: 
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And (x1, x2) is the coordinate of a point in vertical plan, Φ 
is a random phase angle uniformly and independently 
distributed in the interval (0,2π), and ωx1 and ωx2

 

 are the 
considered region in the frequency domain. 

6 COMPUTING STEPS 
  
Step 1: Generate 2-D Gaussian random field when 
mean=0 and variance=1, by Monte Carlo simulation.  

Consider a 2-dimensional homogeneous random field 
with mean zero and spectral density function S(ω) which 
is insignificant magnitude outside the region defined by 
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Denote the interval vector by 
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where Nx1 and Nx2 are the numbers of the intervals along 
the 2 axes of the wave number domain, and ω l=-ωu

 

, 
therefore the interval vector could be written as 
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Step 2: Transform the standard Gaussian field to a 

lognormal random field whose mean is μE and the 
standard deviation is σE

 

, as a result, only the positive 
value of the Young's modulus, E, are generated. The 
mean and variance of lnE can be calculated as follows: 
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where μE is the mean of Young's modulus, and σE

2 

     The procedure proposed here is extended to 
anisotropic case. The sample was generated in the 2 
directions, and Young's modulus was assumed to be the 
same for the horizontal and vertical directions. However 
the generated field was stretched in the horizontal 
direction only to give longer horizontal autocorrelation 
distance before assigning the generated random field to 
the finite element mesh to be calculated (stretching by 
averaging the values in the horizontal direction to reach 
the semi-isotropic or anisotropic condition) by FORTRAN 
program. 

is the 
variance of Young's modulus.  

Step 3: The transformed lognormal random field is 
assigned to the finite element mesh. Young's modulus is 
assumed to be the same for the horizontal direction.  This 
assumption is justified due to much longer correlation 
distance to the horizontal direction compared to the 
vertical (e.g. Lumb, 1975). The ground’s depth was 10 m 
discrete to 20 cm thick elements in FEM. the generated 
Young’s modulus is assigned to each element.  

Step 4: The settlements of two circular foundations, 
differential settlement between the two circular 
foundations, the support's reactions, and the maximum 
and minimum bending moment in the frame body on the 
specified load is evaluated.  

Step 5: Repeat step 1 to 4 as many times as 
necessary. 

The author considered 1000 times was sufficient in 
this research according to quick check for the results by 
comparing the predicted settlement values to the 
theoretical values of simulating 100, 500, 1000, or 10000 
times for a case. 
 
 
7 NUMERICAL EXAMPLE 
8 Description of cases analyzed 
 

The soil mass was discretized into 100x50 four-noded 
rectangular elements. While the overall dimensions of the 
ground model were 20R by 10R, where R was the footing 
radius. The size of the elements was 0.2R by 0.2R. The 
side faces of the finite element model were constrained 
against horizontal displacement, but were free to slide 
vertically; while the nodes on the bottom boundary were 
fixed.  
 

 
 
Figure 1. The ground setting and the loading conditions 
(none dimensional). 
 



      One might wonder if there would be boundary effects 
associated with such close lateral boundary; therefore, the 
author has evaluated the effect of the boundary condition 
by comparing the settlement obtained from his mesh and 
the settlement calculated by the Boussinesq's equations. 
However, it was found that a vertical displacement in each 
element requested by the finite element method was 
almost corresponding to the Boussinesq’s solution, and it 
could be confirmed that the finite element method 
program used by this research was appropriate.  

To generalize the results, the calculation results were 
normalized by q (load intensity), R, and L (the frame span) 
as shown in Figure 1.  

The analysis was of only one footing at a time. 
However, the figure shows the combined case 

 
Young's modulus, E, was given by E/q. The 

settlements were normalized by R, where the 
autocorrelation distance, a, and the differential 
settlements between the two footings are normalized by L. 
As it is shown in "table 1" 60 different combinations of 
parameters were examined in total. 1000 Monte Carlo 
simulation runs were made for each case. 
 
Table 1. Case studied. 
 
E/q 100, 150, 200 
a/L 0.1, 0.3, 0.5, 1.0, 10 
COV 0.0, 0.5, 0.7, 1.0 E 

 
 

It could be necessary in some cases to consider the local 
averaging of the soil property depending on the mesh size as 
suggested by Vanmarcke (1977). However, it was 
experienced that this problem was not terribly serious in 
practical calculation as shown by Suzuki (1990). The problem 
was not further studied in detail in this study.  
 
 
9 RESULTS AND DISCUSSION 
10 The differential settlement between the footing’s 

centers 
 
Figure 2 shows the average of the differential settlement 
of the footing, normalized by L, against COVE

And figure 3 shows the average of the differential 
settlement of the footing, divided by the settlement of the 
footing on uniform ground, δ*, i.e. Δδ/δ*, against COV

.  

E
 

.  

It is observed that as the coefficient of variation of 
Young’s modulus, COVE

 

, increases, the mean value of 
the differential settlement increases even though if the 
mean value of Young’s modulus is the same. 

 
 
Figure 2. Relation of COVE

 

 vs. Mean value of differential 
settlement. 

It could be surprising that there was no difference in 
the mean value of the differential settlement between 
cases of autocorrelation distance. One would expect that 
a very large autocorrelation distance (ie 10 time span 
length) would yield much lower mean value of the 
differential settlement than a very small autocorrelation 
distance (ie. 1/10 of span length).   

 

 
Figure 3. Relation of COVE

 

 vs. differential settlement 
ratio. 

Therefore, it is necessary here to call the results of 
some previous papers such as Fenton, and Griffiths 
(2002) and Honjo et al. (2007); it was found that the 
settlement, µδ, increases as COVE increases, however, 
the settlement was independent of the autocorrelation 
distance. That was result of assuming the horizontal 
autocorrelation distance to be very long and varying the 
vertical autocorrelation distance. Therefore, the changes 
in the autocorrelation distances have not affected the 
differential settlement either.  



  
Also it is observed that the mean value of the 

differential settlement could exceed 10 % of the total 
settlement in case of footings on uniform ground. 

 
11 The changes in the support reactions 
 

In Figure 4 shows COVE is plotted against ΔRa/ Ra*, 
where Ra* is the reactions of a footing on uniform ground.  
It is observed that ΔRa/ Ra* increases as COVE

 

 
increases, and so as E/q increases. 

 
 
Figure 4. Relation of COVE vs. ΔRa/ Ra
 

*. 

 
12 The changes in the positive bending moments 
 

In Figure 5 shows COVE is plotted against ΔM+/ M+*, 
where M+* is the maximum positive bending moment 
within the span results of footings on uniform ground.  It is 
observed that ΔM+/ M+* increases as COVE

 

 increases, 
and so as E/q increases. 

 

 
 
Figure 5. Relation of COVE vs. ΔM+/ M+

 
*. 

 
 
Figure 6. Relation of a/L vs. COVΔM+

 
. 

In Figure 6, a/L is plotted against COVΔM+. It is 
observed that a/L increases COVΔM+ increases, however 
the increase is limited by a/L reaches 1. Moreover the 
value of COVΔM+ ranged  from 0.3 to 0.81 for COVE = 0.5 
~ 1.0.  

 
 

Figure 7. Relation of a/L vs. COVΔM+/COVE
 

. 

In Figure 7, it is observed that as the autocorrelation 
distance, a, increases, the uncertainty of the predicted 
internal forces and stresses (i.e. COVΔM+/COVE

 

) 
increases. However, it converges to 0.81- 0.87 when a/L 
is reaching 10. 

 
13 CONCLUSIONS 
 
The following conclusions can be drawn from this study: 

It was found that as the coefficient of variation of 
Young’s modulus, COVE, increases, the mean value of 
the differential settlement increases even though the 



mean value of Young’s modulus is the same because the 
differential settlement is correlated with the heterogeneity 
of the spatial variability of soil (COVE

Also the ΔR
). 

a/ Ra* and ΔM+/ M+* are increase as 
COVE

The effects of heterogeneity of the ground on the 
differential settlement are significant. The effect can be 
more than 10 % of the total settlement for COV

, increases. 

E ≥ 1 
(100%). However, that have not show serious effect on 
the frame stresses; because the changes in ΔRa/ Ra* 
have not Exceeded 0.008 and the maximum bending 
moments have not Exceeded

It is observed that a/L increases COV

 0.014 (which is higher but 
still unserious or dangerous compared to the factors of 
safety). 

ΔM+ increases, 
however the increase is limited by a/L reaches 1. 
Moreover the value of COVΔM+ ranged from 0.3 to 0.81 for 
COVE

It is observed that the autocorrelation distance, a, 
increases, the uncertainty of the predicted settlement, i.e. 
COV

 = 0.5 ~1.0. 

ΔM+/COVE

However, this conclusion needs for further study taking 
various and complicated frames.  

, increases. However, it converges to 0.81- 
0.87 when a/L is reaching 10. 
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