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ABSTRACT 
Recently the authors presented a semi-analytical solution for the undrained plane strain expansion of vertical cylindrical 
cavities in Modified Cam Clay, in which the hardening parameter  , remained constant. This allowed the determination 

of explicit expressions for the principal effective stresses. In the present paper, the restriction imposed on  is relaxed, 

as it varies during undrained shearing in Modified Cam Clay. The new semi-analytical solution is applied to a well-known 
benchmark case involving remoulded Boston Blue Clay. Comparisons are first made with the case of  constant and 

then with both a finite difference solution and published finite element results.  
 
 
RÉSUMÉ 
Récemment, les auteurs ont présenté une solution semi-empirique de l’expansion non-drainée et en déformation plane 
d’une cavité cylindrique dans Cam Clay Modifiée, en gardant constant le paramètre de durcissement , Ceci a permit de 

déterminer exactement les contraintes effectives. Dans le présent article, la restriction imposée sur  est relaxée, 

comme c’est le cas dans Cam Clay Modifié. La nouvelle solution est appliquée à un cas de référence très connu qui 
implique l’argile bleue de Boston. Des comparaisons sont effectuées avec le cas  constant et aussi avec des solutions 

aux différences finies et aux éléments finis. 
 
 
 
1 INTRODUCTION 
 
Silvestri and Abou-Samra (2012) obtained explicit, closed-
form, expressions for the effective stresses generated 
during the expansion of a vertical cylindrical cavity in 
Modified Cam Clay (MCC) in plane strain and undrained 
conditions. The solution was obtained on the assumption 
that the hardening parameter  , which controls the size 

of the yield loci, remained constant throughout the 
expansion. The rationale for the assumption of the 
constancy of the parameter  was based on preliminary 

computations which showed that results obtained for  

constant were quite similar to those found for  

variable, especially for normally consolidated and lightly 
overconsolidated clays. 

In the present technical note, the hardening parameter 
 of the yield locus varies during the shearing process, 

as required by the MCC model (See, for example, Wood 
2007). New, rigorous, albeit not closed-form, relationships 
are obtained for the effective stresses. As the MCC model 
is taken to be applicable in its entirety, although it is 
known that it applies better to isotropically normally 
consolidated and lightly overconsolidated clays than to 
heavily overconsolidated clays, the solution presented 
herein may serve as a valuable benchmark for verifying 
various cavity expansion numerical codes based upon the 
MCC model. Because the determination of the various 
stress and strain parameters requires the use of simple 
numerical schemes, without having to resort to 
sophisticated finite difference and finite elements codes, 

the present solution may be considered to follow the steps 
taken by other investigators, such as Collins and 
Stimpson (1994), Collins and Yu (1996), Cao et al. (2001), 
Yu (2000), and Chen and Abousleiman (2012). 

The solution obtained in the present technical note is 
applied for illustration purposes to a benchmark case 
reported in the literature which involves remoulded Boston 
Blue Clay. Results are first compared to those obtained by 
Silvestri and Abou-Samra (2012) for constant, and 

then to finite difference solutions derived using a 
commercial code. Finally, the results are also compared 
to published finite element solutions obtained on the same 
clay. 

 
 

2 BEHAVIOR OF MODIFIED CAM CLAY IN 
UNDRAINED COMPRESSION 

 
Before discussing the application of the MCC model to the 
problem at hand, it should be stressed that the authors 
are fully aware that this model gives reasonably good 
results only for isotropically normally consolidated clays. 
However, because the MCC model is implemented in 
most commercial numerical codes, the authors chose to 
retain it even though the approach is applied to clays that 
were: a)  consolidated, and b)  rebounded. 

Notwithstanding this, it is the intention of the authors to 
use an anisotropic model in the future. Possible 
candidates are: a) the anisotropic MCC model (Dafalias 
1987; Dafalias et al. 2002, 2006), b) the anisotropic 
bounding surface plasticity model (Dafalias 1986; Dafalias 



 

and Herrmann 1986; Anandarajah and Dafalias 1986; 
Ling et al. 2002; Taiebat et al. 2010), and c) the Banerjee 
model (Banerjee and Yousif 1986; Banerjee et al. 1988). It 
is believed that both the anisotropic MCC model and the 
Banerjee model have the advantage that they can 
account for both inherent and induced anisotropy with 
relatively few model parameters. 

The MCC model remains one of the most employed 
plasticity model for characterizing the response behaviour 
of clays incorporating the effect of stress history (Yu 2000; 
Wood 2007; Chen and Abousleiman 2012). The 
interested reader may refer to Wood (2007) for a detailed 
presentation of the model. 

Figure 1 presents two undrained compression tests on 
initially normally consolidated clay specimens (i.e., 

 and ). The effective stress paths in the 

 plane, where  is the mean effective stress and  

is the deviator stress, are indicated in Fig. 1a. During the 
tests, the specific volume  ( , where  is the void 

ratio) remains constant (Fig. 1b). Similarly, Fig. 2 presents 
two undrained compression tests on a heavily 
overconsolidated clay (i.e.,  and ). 

The initial stress state may be either isotropic, as 
represented by point , or anisotropic, as represented by 

point  on the consolidation line in Fig. 1a or point  

on the  rebound line in Fig. 2a , depending on 

whether the clay is initially normally consolidated or 
overconsolidated. 

The plastic effective stress path followed by MCC 
is given by: 

 

                           [1] 

 
where q is the deviator stress and 
 

q , with 

, ,  effective principal radial, tangential, and 

vertical stresses;  initial mean effective stress;  

  , with  initial deviator 

stress, and  coefficient of earth pressure at rest; 

 mean effective stress  ; 

 at critical state , with 

 friction angle;  , with slope 

of curve in loading,  slope of  in 

unloading, and  specific volume , with void 

ratio (See Figs. 1b and 2b). The yield locus of MCC is 
given by: 
 

                                               [2] 

 
where  is the hardening parameter which controls the 

size of the yield locus, as shown in Figs. 1a and 2a. 
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Figure1. Undrained triaxial compression tests on normally 

consolidated clay: (a)  plane; (b)  plane (adapted 

from Wood (2007)). 

 
As mentioned above, Silvestri and Abou-Samra (2012) 

assumed that the hardening parameter  remained 

constant during shearing. Examination of the curves in 
Figs. 1a and 2a clearly shows that  varies during the 

shearing process. The assumption of constant  can be 

considered to be approximately valid only when the initial 
stress state, say point C in Fig. 1a, is close to the final 
critical stress state represented by point F. This happens 
only when the soil is lightly overconsolidated (See, for 
example, Wood 2007). 
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Figure 2. Undrained triaxial compression tests on heavily 

overconsolidated clay: (a)  plane; (b)  plane 
(adapted from Wood (2007)). 
 

If the specific volume  of the normally consolidated 

clay is the same as that of the overconsolidated clay, then 
the plastic effective stress paths followed by the two 
specimens in Figs. 1 and 2 are described by the same 
equation, that is, Eq. 1, provided elastic and plastic strains 
take place during shearing. The coordinates  at 

critical state are given by: 
 

         [3] 

 
 
3 CYLINDRICAL CAVITY EXPANSION IN MODIFIED 

CAM CLAY  
 
Because the expansion takes place under plane strain in 
the axial (vertical) direction and in undrained conditions, 
then 
 

     [4] 

 
where , ,  are the natural strains in the radial, 

tangential , and axial directions, respectively. Silvestri and 
Abou-Samra (2012) showed that the elastic-plastic 
relationships of MCC are given by: 
 

  [5a] 

 

               [5b] 

 

                  [5c] 

 
where  = shear modulus ; and , , deviator 

stresses in the radial, tangential, and axial directions 
( , , . 

Finite natural strains are considered in both the elastic 
and plastic phases of expansion (See, also, Yu 2000, and 
Chen and Abousleiman 2012). Finite strains become 
approximately equal to small strains in the elastic region, 
when the strains are relatively small. The shear modulus 

 is considered to remain constant during shearing 

(Zytynski et al. 1978).  
The axial stress  is obtained by integration of Eq. 5c. 

Because  , Eq. 5c reduces to 

 

                                                      [6] 

 

Integration of Eq. 6 gives  
 

   [7a] 

 
or  

   [7b] 

 

from which,  

   [7c] 

 

where , , and  are the initial values of , , and 

 , respectively. The remaining principal stresses  and 

 are determined by substitution of Eq. 7c into the 

expressions for  and , leading to 

 

   [8a]

  
and  

                    

[8b] 

where  , which is the shear stress in the horizontal plane, 

is given by 

  

   [9] 
 



 

The integrals which appear in Eqs. 7, 8 and 9 must be 
evaluated numerically because the hardening parameter 

 varies continuously during the expansion of the cavity. 

The variation of  is found by equating the plastic 

volumetric change to the elastic one, that is (See, for 
example, Wood 2007), 
 

    [10] 

 

from which,  

 

      [11] 

 
because the specific volume  remains constant in 

undrained shearing. 

It may be shown that introduction of Eq. 11 into the 
integrals in Eqs. 7 to 9 leads to incomplete Beta functions 
(See, for example, Gradshteyn and Ryzhik 1980). 
However, because either the original integrals or the 
resulting incomplete Beta functions must be evaluated 
numerically, the integration in the present study was 
carried out using the original equations (i.e., Eqs. 7 to 9). 
The shear strain is computed from Eqs. 5a and 5b, 

leading to 
 

                  [12] 

 
where , since  in plane 

strain and undrained shearing. The integral in Eq. 12 
must, once again, be evaluated numerically. 

Computation of total stresses , , , and pore 

pressure  follows the approach of Silvestri and Abou-

Samra (2012). As a consequence, their Eqs. 30 to 38b 
were used in the framework of the present study and are 
not repeated herein. 

It should be mentioned that the shear strain  in Eq. 

12 is also equal to , where  and  are generic 

radial distances of the same material element in the 
strained and unstrained conditions (See, for example, Yu 
2000). In addition, the shear strain  generated at the wall 

of the cavity becomes , that is, , where  

and  represent the cavity radii after and before the 

distortion has occurred. Furthermore, the computation of 
the limiting radial expansion pressure, which corresponds 
to , is facilitated by the use of the Almansi 

tangential strain  which is defined as  

and which reduces to  at the wall of 

the cavity (Baguelin et al. 1978). 
 
 
4 APPLICATION 
 

The theoretical relationships derived previously have 
been applied to remoulded Boston Blue Clay which is 
modelled as Modified Cam Clay. The clay properties 

which are reported in Table 1 are based on those given by 
Carter et al. (1979) and Randolph et al. (1979).  

 
Table 1. Initial stress parameters 
 

OCR  
 

[kPa] 
 

[kPa] 
 

[kPa] 
 

[kPa] 
 

[kPa] 

1 0.65 300 165 257 270 7570 

8 1.35 50.9 68.7 257 365.6 10227 

 
For illustration and comparison purposes, only the 

normally consolidated (OCR=1) and the overconsolidated 
clay (OCR=8) cases were retained in the present paper. 
The Cam Clay parameters are the following: 

, , , , and . 
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b) OCR = 8 

Figure 3. Effective stress paths: (a) OCR = 1; (b) OCR = 
8. 
 

The effective stress paths (ESPs) followed by the two 
specimens are shown in Fig. 3. The ESP for OCR = 1 in 
Fig. 3a indicates that the initial stress state, which is 
represented by point A, is already on the plastic stress 
path. The critical state is reached at point C 

, . The ESP for OCR = 

8 in Fig. 3b indicates that the path rises vertically until the 
initial yield curve which corresponds to  is 

reached at point B. The clay behaves elastically along AB. 
Thereafter, the clay becomes plastic and follows the path 
BC where the critical state is again reached at point C. 

The shear stress-shear strain curves were determined 
by means of Eq. 12 and are presented in Fig. 4. The 



 

curves shown in Fig. 4a for OCR = 1 are quite similar. The 
curves for OCR = 8 show that the linear elastic phase 
ends at  where the initial yield curve is 

reached.  
 

 
a) OCR = 1 

 

 

b) OCR = 8 
 
Figure 4. Shear stress-shear strain curves: (a) OCR = 1; 
(b) OCR = 8.  
 

The similarity between the two curves in Fig. 4b is less 
perfect than for OCR =1. At critical state, the shear stress 
 is the same for OCR = 1 and OCR = 8. It equals 

 , that is, . In addition, the 

effective principal stresses at critical state are given by the 
following expressions: 
 

             [13a] 

                 

[13b] 
 

               [13c] 

 

for both OCR=1 and OCR=8. These values were also 
found by Carter et al. (1979). 
 

Figure 5 presents the relationships between the total 
radial stress  and the excess pore pressure  

generated at the wall of the cavity as function of the 
Almansi tangential strain . The limiting values are 

determined for  or . While the limiting 

values of  and  for OCR = 1 are equal to  

and , respectively, the corresponding values 

for OCR = 8 are equal to  and  

.Again, the similarity between the two cases (i.e.,   

constant and  variable) is slightly better for OCR = 1 

than for OCR = 8.  
 

 
a) OCR = 1 

 
b) OCR = 8 

 

Figure 5. Normalized radial stresses and excess pore 

pressures generated at wall of cavity: (a) OCR = 1; (b) 

OCR = 8. 

 

Figure 6 presents the distributions of the effective 
principal stresses and the pore pressure normalized with 
respect to  as function of the relative 

distance  from the center of the cavity, for . 

Examination of the effective tangential stress relationship 
for OCR = 8 shows that there exists a tensile region 
located approximately from  to . 
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Figure 6. Normalized effective stress and excess pore 

pressures distributions for : (a) OCR = 1; (b) 

OCR = 8. 

  
Figure 7 presents for comparison purposes the results 

reported by Randolph et al. (1979) which were obtained 
using a finite element analysis. These are compared both 
with the theoretical results obtained in this study and as 
well as with numerical results which were determined 
using the finite difference code FLAC (Itasca 1995). 
Examination of the various data reported in Fig. 7 shows 
that the agreement between the numerical methods and 
the theoretical solution is better for the  variable 

approach than for the  constant (simplified) 

approach. 
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Figure 7. Comparison between effective stress and 

excess pore pressure distributions: (a) OCR = 1; (b) OCR 

= 8. 

 
For completeness, Table 2 presents the values of the 

total principal stresses as well as the ratio  

at critical state. The theoretical values are compared to 
those reported by Randolph et al. (1979) which were 
obtained by means of the finite element analysis 
mentioned above, for  or  , that is, 

for , where  and  are, as before, the radii of 

the cavity, before and after the distortion has occurred. 
According to Randolph et al. (1979), the stresses would 
have probably reached their ultimate values for 

, that is, when the cavity radius would have 

doubled in size. While this is true for the principal effective 
stresses as shown in Fig. 7, examination of the values 
reported in Table 2 indicates that the ultimate total 
stresses were not yet reached when . 

 
 
 
 
 
 
 



 

Table 2: Total principal stresses at critical state 
 

OCR  
 [kPa] 

 
[kPa] 

 
[kPa] 

  

 *1 *2 *1 *2 *1 *2 *1 *2 

1 606.5 558 708.8 660 504.3 456 0.5 0.5 

8 545 528 647.6 631 443 426 0.5 0.5 

*1 : This study for  

*2 :  Estimated from data reported by Randolph et al. (1979) for  

 
 
 
5 CONCLUSIONS 
 
The following conclusions are drawn on the basis of the 
theoretical approach presented in this paper: 

a. Improved principal effective stress relationships 
are obtained for the plane strain undrained 
expansion of vertical cylindrical cavities in 
Modified Cam Clay, by allowing the hardening 
parameter  to vary during shearing. 

b. Effective stress paths, stress-strain curves, and 
stress distributions are obtained for specimens of 
normally consolidated and overconsolidated 
remolded Boston Blue Clay, modelled as 
Modified Cam Clay. 

c. Comparisons were carried out first with the 
results obtained by Silvestri and Abou-Samra 
(2012) by assuming that the hardening 
parameter  remained constant during shearing. 

It is shown that while the two approaches (i.e., 
 variable and  constant) yield 

approximately the same results for OCR = 1, 
there are nonetheless minor differences for OCR 
= 8. 

d. Comparisons with numerical results obtained by 
means of a finite difference code and with 
published results derived by means of a finite 
element solution show good agreement with the 
present  variable approach. 

e. It is also shown by comparing the ultimate total 
stresses obtained in the present approach with 
those found from the finite element solution that 
the final total stress state had not yet been 
reached when the cavity radius doubled in size. 
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