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ABSTRACT 
The study of the viral component of ancient microbial communities from permafrost is important for the understanding 
evolution of microbial communities, possibility of their variations due to climate change, changes in the physical-chemical 
state of permafrost and practical questions of biosafety. For the first time the virus particles in native samples of ancient 
ice wedges of the Mammoth Mountain in Siberia have been discovered. Defined morphological diversity of viruses that 
can be attributed to five main types: miovirus, sifovirus, podovirus, spherical and filamentous. Specific characteristic of 
these viruses are small size and fever genome.  
 
RÉSUMÉ 
L’étude des virus qui sont présents dans des communautés microbiennes anciennes du pergélisol est cruciale pour la 
compréhension des questions fondamentales telles que l’évolution des communautés microbiennes, la possibilité de leur 
changement suite aux changements du climat, de l’état physico-chimique du pergélisol aussi bien que les questions 
pratiques concernant la sécurité biologique. Les virus ont été découverts pour la première fois dans des glaces 
éternelles de la montagne Mammouth. La définition de leur diversité morphologique faite, les virus peuvent être classés 
en cinq types principaux : miovirus, sifovirus, podovirus, virus sphériques et virus filamenteux. Leur spécificité consiste 
en une petite taille du génome. 
 
 
 
1 INTRODUCTION 
 
Permafrost microorganisms in comparison with ancient 
salt or amber isolates are widely distributed 
(Vishnivetskaya et al., 2006; Steven et al., 2008; Yergeau 
et al., 2010; Margesin&Miteva, 2011). For more than a 
century there have been reports of living organisms in 
permafrost, some of which are certainly might be millions 
of years old, if they have age which is similar to the age of 
permafrost itself. Living (or at least viable) bacteria 
apparently occur deep in solid-frozen ground (permafrost) 
in the cold regions (see the review by Gilichinsky and 
Wagener, 1995). Sometimes permafrost as well as 
microorganisms in it is dated quite well (Katayama et al., 
2007). Viruses in permafrost were not broadly reported, 
however, their presence might be associated with 
psychrophile bacteria and other organisms (Morita 1997). 
There is a number of questions related in life in ancient 
permafrost. For example, are isolated bacteria as old as 
the permafrost itself or can contamination with more 
recent bacteria have occurred? Do the bacteria grow in 
the permafrost? And to what extent are ‘normal’ metabolic 
processes taking place? - or are they inactive and 
cryopreserved? An important characteristic of permafrost 
is that some water, held tightly by electrochemical forces 
onto the surfaces of mineral particles or under the 
influence of capillary forces, occurs in even hard-frozen 
permafrost (Williams and Smith, 1991; Brouchkov & 
Williams, 2002). The thin liquid layers provide a route for 
water flow, which is normally from the warmer to the 
colder parts (Derjaguin and Churaev, 1986). The water 
may carry solutes and small particles and thus perhaps, 
bacteria, but its movement is extremely slow (Burt and 
Williams, 1976): at a few degrees below °C it may thus 

take thousands of years to move a meter. A bacterium of 
greater size than the thickness of the water layer is likely 
to move much more slowly than the water. The 
microorganisms are about 0.3 to a few microns in size, 
while the thickness of the water films tends to be less. 
One concludes that microorganisms in permafrost have 
been isolated, certainly from the ground surface, trapped 
among the mineral particles and ice. 

The longest, continuously frozen permafrost in the 
Northern hemisphere is variously estimated as between 
one and three million years old (Foundations of 
geocryology, 1998). Abyzov’s investigations at the Vostok 
station (Abyzov, 1993) revealed bacteria, fungi, diatoms 
and other microorganisms which were probably carried to 
Antarctica by winds. The ages of these individuals could 
be more than half a million years. Abyzov (1993) has 
showed the presence of viable bacteria in the ice which 
was hundreds of thousands of years old and at a depth of 
thousand meters which could not have been 
contaminated from the surface or from below in recent 
time. 

Although most microorganisms do not grow at 
temperatures below 0°C, certain bacteria and fungi can be 
physiologically active and Friedmann (1994) notes 
metabolic activity in permafrost bacteria at -20°C. Others 
reporting evidence concerning bacterial activity in soils 
below 0°C, include Kalinina, Holt and McGrath (1994); 
and Clein and Schimel (1995). Water is the solvent for the 
molecules of life, and availability of water is a critical 
factor affecting the growth of all cells. But the particular 
water which is unfrozen in permafrost, although at less 
than 0°C and in the presence of ice, differs from ‘ordinary’ 
water. It is attached to the soil mineral particles surfaces. 
As the temperature falls to -2 or -3°C, the remaining water 



is in layers so thin that a bacterium could not be fitted in. 
Metabolic activity and especially the ability of 
microorganisms to grow for a long time are greatly limited 
in the conditions of the environment within the permafrost. 

The single bacterial cell is trapped and not even free 
to move or expand within the unfrozen water layer. 
Probably some microorganisms grow if only because of 
the substantial degree of microbial activity at 
temperatures below 0ºC. But for the most part it appears 
unlikely. Microscopic pictures of frozen soils show single 
cells mostly (much less groups of a few cells), not 
colonies (Figure 1), and that fact is another argument for 
dormancy microorganisms in permafrost (Melnikov et al., 
2011). Studies of viruses are of interest for permafrost, 
however, they are almost unknown (Allen, 2010). 
 
2 METHOD OF WORK AND ISOLATION 
 
2.1 Overview 

 
Samples were collected in at an altitude of 83 m above 
sea level at the Mammoth mountain exposure (Figure 2) 
in the Central Yakutia (62°56'N, 133°59'E), exposition 
north, and at a depth of 1.5 m from the surface of the 
Neogene formation (Figure 3). A deep hole of 
approximately 100 cm was horizontally dug into the frozen 
Neogene horizon. After sterilizing the surface of this 
sampling hole by flame, pieces of frozen sediment (icy 
sand) were collected from a horizontal depth of 75–100 
cm, cleaved with a sterilized axe, and collected in sterile 
50 mL vials by using sterile spatulas. The mean 
temperature of the icy sand at the time of sampling was 
−4 °C. 

 

 

Figure 1. Variety of microorganisms isolated from ice 
wedge of the Mammoth Mountain (Filippova et al., 2014) 
 
 

 
 
 

 
Figures 2 & 3. Section of Mammoth Mountain 
 

Samples were immediately embedded in frozen 
natural permafrost material, then stored in a cryogenic 
mixture of NaCl and water to keep the material constantly 
frozen. The samples were kept frozen during transport 
from Yakutia to the laboratory in Moscow where samples 
were stored at −20 °C. Thus, the collected material was 
constantly kept frozen and never subjected to thawing. A 
composite sample was produced under sterile conditions 
immediately before analysis. At this stage of modern 
science development, it is possible to determine 
accurately the age of the amber fossils (Lambert&Poinar, 
2002), as well as to determine the age of frozen soils.  

The age of the permafrost in the Mammoth mountain 
area exceed 3 million years that was dated by 
paleoclimatic reconstructions (Bakulina&Spector,2000; 
Baranova et al., 1976). The exposure is destroyed by the 
river (more than 1 meter per year); therefore, the sampled 
sediments were obviously in a state of permafrost. The 
latter are fine-grained sands, and their age corresponds to 
the middle Miocenbe, 10–12 million years. The sediments 
have been intensively studied and did not thaw out 
because of the cold climate of Yakutia  (Markov, 1973; 
Foundations of Geocryology, 1998; Bakulina and Spector, 
2000). Samples of different dilutions in sterile conditions 
were added to Petri dishes containing liquid ISP1 media 
for 20-30 days at 20°С. A few isolated strains were 
described before (Brouchkov et al., 2012; Zhang et al., 
2013) from the sample. Observations of the appearance 
of the negative parts of lysis in the area of active growth of 
colonies was performed visually using a magnifying glass 
during the whole period of incubation. Material was 
collected from the zones of lysis by the bacteriological 



hook for subsequent electron microscopy analysis. 
Colonies with negative portions were separated on an 
agar slant medium and incubated for 2 days at 28°C. 
Culturing the isolates was done in liquid medium ISP1. 
The medium was dispensed into 250 ml flasks at 50 ml, 
and sterilized in an autoclave at a pressure of 1 atm. for 
30 minutes. 1 ml cell suspension of 1-2 x overnight culture 
was placed in the flasks with a sterile nutrient medium. 
Cultivation was conducted by submerged cultivation on a 
rotary shaker while aeration and stirring is carried out 
simultaneously by rotating at a speed of 180 rev / min. 
Incubation was carried out at a temperature of 26-28°C for 
48 hours. 

Phage lysate preparation. Liquid submerged lysogenic 
culture was centrifuged at 9000 g. The resulting 
supernatant was filtered using a syringe membrane filter, 
pore size 0.2 µ to release phage lysate from cell 
fragments of the host bacterium. 

The method of phages collection. Phage lysate was 
used to accumulate phages in the indicator culture liquid 
or the bacterial culture of phage host. 500 ml of the 
filtered phage lysate was added in the submerged culture 
of the indicator strain of lysogenic bacteria or bacterial 
isolate after 7 hours, then culture was incubated under the 
same conditions for 20 - 24 hours. 

The resulting culture fluid was centrifuged at 9000 g. 
The supernatant containing phage particles and cell 
fragments were centrifuged at 100000 g for release from 
the bacterial cell fragments. The result is a phage 
concentrate. 

 
2.2 Study of lytic properties of phage 

 
2.2.1 Selection of the indicator culture 
 
One day cultures of Bacillus subtilis ATCC 6633, as well 
as strains B.mycoides, B. megatherium and Paenibacillus 
sp., isolated from the Antarctic Lake Untersee, were used 
to study the lysing activity of the phage. 
 
2.2.2 Study of lysis activity 
 
Concentrated material containing phages in amount of 5µ, 
and also diluted by 10-1, 10-2, 10-3 

Methods for microscopic study included phase-contrast 
protocols by Zetopan microscope with phase-contrast 
device. 

was applied to freshly 
prepared bacterial lawns. Thereafter it was incubated at 
28°C for a day. Lysing activity was estimated by 
appearance of the transparent zones - zones of lysis. 

The method of electron-microscopic study. For tests 
10 ml of melted sample was taken. After standing about 
0.5-2 hours at room temperature, enlightened upper 
portion was selected to produce samples for electron 
microscopy. Electron microscopic studies were performed 
on the electron microscope JEM-100CXII (JEOL, Japan). 
Samples were viewed with magnification × 40,000. 
 
2.2.3 The method of isolation of phage DNA. 
 
Isolation of DNA from the concentrated lysate:

After 3 min of centrifugation the resulting mixture the 
overhead fraction was taken to a new tube, and 
chloroform was added in a volume equal to the volume of 
obtained the fraction. The solution was mixed for 10 
seconds. Then the resulting mixture was again 
centrifuged for 2 min. The top fraction was separated, and 
sodium chloride was added to a final concentration of 
0.5M. Then isopropanol in a volume of 0.7 part of the total 
volume of the mixture was added and mixed. After 
centrifugation for 5 minutes the precipitate was separated, 
and 0.5 mL of 70% ethanol solution was added, stirred, 
then centrifuged again for 5 minutes. The resulting 
supernatant was removed under vacuum, and then dried 
at 37°C for 10 minutes. The dry material was dissolved in 
105 µl of ampoule water. To determine the DNA 
concentration 5 µl sample was transferred to 
spectrophotometer. Spectra were recorded at a 
wavelength of 260 nm and 280 nm. 

 0.5 ml of 
the precipitated sample of phage were centrifuged at 

14,000 rpm for 2 minutes to separate from cell fragments. 
Then equal volume of phenol equilibrated with buffer to 
pH = 8.0 for 10 seconds was added. Then after a 5 
minute centrifugation aqueous (top) fraction was taken to 
a new tube. Then equal volumes (250mcl / 250mcl) 
phenol and chloroform mixed for 10 seconds was added 
there. 

 
Electrophoresis in agarose gel

 

: For preparing a substrate 
2% agarose was used for gel solution preparation in the 
final TE buffer. A dye (ethidium bromide to a final 
concentration of 2 mg/ml) was added and mixed 
thoroughly. The sample of DNA and marker fragments of 
the phage DNA was applied in an amount of 2 µl in 
appropriate wells. Electrophoresis was performed for 15 
minutes at 120 V. 

3 RESULTS 
 

3.1 Identification of virus-like particles in the sample 
from ice wedge by electron microscopy 

 
Viral particles of different morphology by the electron 
microscopy of melted ice samples were found (Figure 4). 
 
3.2 Identification of lysogenic bacterial forms. 
 
The number of colony forming viable organisms in the 
samples was an average of 102-103

The appearance of the sterile areas in the peripheral 
zone of the old colonies suggests that these areas are the 
result of the release of the phage from lysogenic bacteria 
cells and subsequent lysis of some of them (Figure 5). 
The release of the phage can be due to physiological 
state of the cells, i.e., with aging, there is an accumulation 
of metabolic products which can induce the phage output. 
It was noted that during the period of normal saline (2 -3 
days) appearance of sterile areas were not observed. It is 
known that cells lysogenic cultures of microorganisms 
resistant to contained phage and only a small portion of 

 CFU / ml. Increasing 
the incubation periods has revealed 2-3 colonies of similar 
type, in the area with active growth where there is a 
negative sites ranging size 1.5 - 2 mm, whose number is 
increasing with the aging of the colonies. 



them can be sensitive and lysed. Aging and death of the 
cell population may contribute to the release of the phage 
lysogenic cultures. For studying the source of the 
appearance of bald spots on the colonies electron 
microscopic examination was carried out. The results 
revealed filamentous virus particles (Figure 6). Colonies of 
this bacteria were isolated and maintained on an agar 
medium ISP1. The study of the morphology of cells 
lysogenic bacteria showed that their cells are rod-shaped, 
often grouped into chains in the stationary growth phase, 
the formation of spores. This can be attributed to the 
bacteria like Bacillus. 
 

 
 
Figure 4. Morphological diversity of viruses attributed to 
five main types: miovirus (a,c,e), sifovirus(g,h), 
podovirus(d), spherical(b) and filamentous(f). Scale line 
0,05 mkm 

 

 
 
Figure 5. The negative (sterile) zone in the region of 
active growth of bacterial colonies (after 20-30 days of 
incubation at 200C) 
 
3.3 The accumulation of phage and identifying its lytic 

action 
 
Lytic activities zones were found at the site with initial 
filtrate, which may indicate its small litic activity or lack of 
sensitivity indicator culture (Figure 7). 

For getting a concentrated viral material performed its 
accumulation in a submerged indicator culture conditions. 
For this obtained viral material was used to inoculate 7 

hours of immersion indicator culture then the culture was 
continued for another 24 hours. 

 

 
 
Figure 6. Filamentary particles of the negative portions 
lysogenic bacterial cultures. Scale line 0.12mkm 
 

 
 
Figure 7. Area of lytic action 

 
3.4 Isolation of phage DNA 
 
After culturing the resulting fagolizat (culture liquid 
containing cellular material and phage particles) was 
placed in a refrigerator to 4 ° C and held up to 14 days in 
order to optimize lysis (Figure 8). Then fagolizat was 
centrifuged for separating cellular material and 
concentration of phage particles. Thereafter, DNA was 
isolated and the electrophoretic separation of virual DNA 
from impurities bacterial DNA was made. It has been 
found that the size of the test filamentous phage not 
greater than 10000 bp (base pairs). 
 
4 CONCLUSIONS 
 
The oldest permafrost in Eurasia is likely to be in the 
Yakutia, where glaciers were not formed and whose age 
can reach 3 million years, when the surface temperature 
was perhaps similar to modern as it follows from 
paleoclimatic studies (Ershov, 1998; Lisiecki & Raymo, 
2005; Hansen et al., 2010). The upper part of the 
Mammoth mountain section is so-called "ice complex", 
which is a syngenetic ice wedges located in the icy alluvial 
sediments. These deposits are younger, they are late 
Pleistocene (Vasil'chuk, 1991), but still represent a kind of 
"time capsule", which have ancient microorganisms which 



have penetrated into the cracks during its formation with 
surface waters. It gives a unique opportunity to study 
microbial communities, their ability to survive, various cell-
cell interactions and symbiotic relationship with viral 
particles, whose role in the survival of ancient microbial 
communities is still unknown. 

Viral particles found in samples of ice wedges of the 
Mammoth Mountain can be attributed to five main 
morphotypes: miovirusy, sifovirusy, podovirusy, spherical 
and filamentous. Bacterial isolates were also detected, 
which cells are carriers of phages. A characteristic feature 
of these phage also are their small sizes and simple 
genome. Their distinguishing feature is the shape of the 
virion. Finding filamentous phage in the colonies of the 
ancient forms of bacteria indicates the possibility of the 
phenomenon of lysogeny in the geological history. 
 

 
 

Figure 8. Electrophoregram DNA isolated from fagolizat: 
a) marker fragments from phage DNA; b) prototype 
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