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ABSTRACT 
Much of our soil mechanics knowledge relates to testing results from uniformly graded materials, but many natural soils 
are composed of a wide range of different sized particles. Many soils such as sandy silts, sandy clays, (with the fine 
particles acting as the soil matrix and sand being the floating particles acting as inclusions) can be considered to be a 
combination of two poorly graded soils with different grain size distributions. These types of soils are usually known as 
“gap-graded soils”. Although there is a lack of mechanical knowledge of gap-graded soil mechanics in the literature, 
some work has been conducted on binary mixtures, which provide a reasonable representation of this type of soil. The 
main focus of this work was to investigate the elastic properties of binary mixtures through the application of an effective-
medium model used in rock mechanics. Results from resonant column test experiments on sand-glass bead mixtures 
were used in this study. Amongst the findings, it was possible to determine a threshold value where the mixture 
properties abruptly changes and how the elastic moduli of the binary mixtures is affected by this sudden change.      
 
RÉSUMÉ 
Une grande partie de notre connaissance sur la mécanique des sols est liée aux résultats des essais sur des matériaux 
à granulométrie uniforme, mais plusieurs sols naturels sont composés d’une large gamme de particules de différentes 
tailles. De nombreux sols, tels que les silts sablonneux, les argiles sableuses (avec les fines particules agissant comme 
la matrice du sol et les particules flottantes du sable, agissant en tant qu’inclusions) peuvent être considérés comme une 
combinaison de deux sols mal étalés, avec différentes distributions de tailles des grains. Ces types de sol sont 
généralement connus comme des « sols à granulométrie discontinue ». Bien qu’il y ait un manque de connaissance de 
la mécanique des sols à granulométrie discontinue dans la littérature, certains travaux ont été réalisés sur des mélanges 
binaires qui fournissent une représentation raisonnable de ce type de sol. L’objectif principal de ce travail était d’étudier 
les propriétés élastiques des mélanges binaires par l’application d’un modèle effectif moyen utilisé dans la mécanique 
des roches. Les résultats des essais à la colonne résonnante sur des mélanges sable-perles de verre ont été utilisés 
dans cette étude. Parmi les conclusions, il a été possible de déterminer un seuil où les propriétés du mélange changent 
brutalement et comment le module d’élasticité des mélanges binaires est affecté par ce changement soudain. 
 
1 INTRODUCTION 
 
The term “gap-graded soils” can be used to describe a 
soil composed of two different grain size distributions. 
Figure 1 shows typical particle size gradation curves for 
well-graded (1), uniform (2), and gap-graded soils (3). 
Soils described as gap-graded have missing particles in a 
certain size range. Gap-graded soils are sometimes 
considered to be a form of poorly-graded soil (Coduto et 
al., 2011). Figure 2 shows a typical probability density 
function (PDF) for particle size for a gap-graded soil. Two 
peaks are observed for the PDF curve, which indicates 
that the particle-size distribution is concentrated around 
two different mean particle sizes. As stated by Durner 
(1994), from a mathematical perspective, a gap-graded 
soil can be conceived as the combination of two or more 
individual soils. 

Much of our soil mechanics knowledge relates to 
testing results from poorly graded materials, but many 
natural soils are composed of a wide range of different 
particle sizes. For example, materials forming glacial tills, 
residual soils, engineered fills, debris flows, mudflows, 
and colluvial soil deposits all have a well-defined 

structure, consisting of a soil matrix that could be either 
clay, sand, or silt, or a combination of these soils. A 
number of these materials may also include larger 
dispersed particles of gravel and/or  

 
 

Figure 1. Characteristic particle size gradation curves 
(Senyur, 1998). 



 
Figure 2. Arithmetic probability density function of a gap 
graded soil (Fredlund et al., 2000). 
 
pebbles. Moreover, many soils such as sandy silts, sandy 
clays, (with the fine particles acting as the soil matrix and 
sand being the floating particles acting as inclusions) can 
also be considered to be a combination of soils with 
dispersed oversized particles, if the difference in size 
between the sand, clay and silt particles is taken into 
account (Vallejo and Lobo-Guerrero, 2012). Hence, 
natural gap-graded soils are not common and are 
occasionally found in engineered or waste soils (e.g. 
sand-gravel, sand-silt or sand-clay mixtures for: man-
made fills, earth embankments, seepage control of dams 
and mine tailing facilities (Peters and Berney, 2010)).  

The particle-size distribution curves shown in Fig. 1 
provide a quantitative representation of the relative 
proportions of the different sizes of particle within a soil 
mass. The shape of the grain size distribution curve can 
be described through two simple parameters, which are 
the coefficient of uniformity (Cu) and the coefficient of 
curvature (Cc): 

 

 
where d60  is the grain size for 60% passing, d10 is the 
grain size for 10% passing, and d30

According to the Unified Soil Classification System 
(USCS), poorly-graded soils have low values of C

 is the grain size for 
30% passing. 

u (< 4), 
while flat curves (well-graded soils) Cu > 4 (gravels) or Cu 
≥ 6 (sands). Soils with smooth curves have Cc values 
between 1 and 3. Most gap-graded soils have Cc

Whilst there is a lack of mechanical knowledge of gap-
graded soil mechanics in the literature, some work has 
been conducted on binary mixtures (the combination of 
two poorly graded soils with different grain size 
distributions), which provide a reasonable representation 
of this type of soil. These studies include the stress-strain 
response at small strains of silty sands by Salgado et al. 
(2000), the effect of confining stress on the undrained 
shear strength of silty sands by Thevanayagam (1998), 
the determination of the transitional fines content of 
mixtures of sand-fines by Yang et al. (2006), and the 

study of the percolation threshold of sand-clay mixtures by 
Peters and Berney (2010).  

 values 
outside of this range (Coduto et al., 2011). 

The main purpose of the work in this paper is to 
investigate the elastic properties of binary mixtures 
through the application of an effective-medium model 
proposed by Dvorkin and Gutierrez (2002). This is 
achieved through comparison with an experimental study 
conducted on binary mixtures and existing predictive 
methods for small strain elastic moduli in the literature.   
 
2 BACKGROUND 
 
2.1 Intergrain State Concept / Transitional Fines Content 
 
The intergrain state concept was introduced by 
Thevanayagam (1998). Research in this area suggested 
that the behaviour of binary mixtures can be characterized 
into two forms, where one is dominated by the fine 
particles, and the other is dominated by the coarse 
particles. Figure 3 depicts the concepts underpinning the 
intergrain state concept; it is possible to observe the two 
different domains, one being coarse-dominated when the 
fines content (fc) is less than a certain value termed the 
“transitional fines content (TFC)” or “threshold fine content 
(fcth)”, and the other one fines-dominated when fc > TFC.  

 
Figure 3. Configuration of Sand with Fines (Benahmed, 
2014). 
 
According to the intergrain state concept, the volume of 
fines is considered to be voids and the fines are assumed 
not to participate in the force chains of the skeleton 
formed by the coarse grains and do not significantly 
influence the mechanical properties (e.g., Gmax

 

). Once the 
fines content increases and is higher than the coarse 
content, the coarse particles are regarded as voids and in 
this case the coarse grains are assumed to not contribute 
to the shearing resistance (Yang et al., 2006).  

2.2 Percolation Theory 
 
From the spread of epidemics and forest fires, to electrical 
conductivity, “Percolation Theory” has been widely used in 
several branches of science to describe critical 
phenomena (Efros 1986). As mentioned in the previous 
section, binary mixtures exhibit a volume-change 
response at a threshold value called the Transitional 
Fines Content (TFC), which can be described by 
percolation theory.  

Percolation theory attempts to define the reaction of a 
binary system to variations in the relative fractions of its 
two components. The distinctive feature of a percolation 



phenomenon is the abrupt change in the behaviour of a 
system due to a small change in the ratio of its internal 
components (Peters and Berney, 2010). Some studies 
have shown, in binary mixtures, that the percolation 
threshold depends on the volume fraction of each material 
and also the relative concentration (Consiglio et al., 2003).  
 For a binary mixture such as a soil, it is important to 
know the volume fraction where the transition (percolation 
threshold) between coarse to fine dominated mixtures 
occurs. Being a percolation phenomenon, the range of 
coarse/fine fractions where the transition occurs can be 
relatively narrow, causing a sudden change in behaviour 
with apparently small differences in the composition.  
 
2.3 Topology of Binary Mixtures: The Dispersed Mode 

approach 
 
Recent investigations of dispersed sand/shale structures 
in rock mechanics have become popular for studies of the 
elastic properties for different material mixtures. Dvorkin 
and Gutierrez (2002) presented an effective-medium 
model for calculating the porosity and elastic modulus of 
binary mixtures. This model can be used for theoretical 
mixing of sand (coarse particles) and shale/clay (fine 
particles) in the dispersed mode (shale coating the grains, 
or pore filling). The dispersed mode approach is assumed 
to be the most compact way of mixing particles of different 
sizes (Dvorkin and Gutierrez, 2002). When using this 
method, the fine grains pack can fit within the pore space 
of the coarse grain pack and still retain their local porosity 
of . 
  

 
Figure 4. Dispersed mixing mode of coarse and fine 
grains (Dvorkin and Gutierrez, 2002).  
 
Figure 4 illustrates the grain size variations from pure 
sand/coarse grains (on the far left) with grain radius R and 
porosity , to pure fine/shale grains (on the far right) 
with grain radius r and porosity , where R>r. The 
critical concentration point is in the middle. Here the fine 
grains completely fill the pore space of the coarse grain 
pack, while the coarse grains are still in contact with each 
other, the critical point also represents the inflection point 
between two different domains. The domain on the right is 
where the coarse grains are floating among the fine 
particle structure, which now is considered to be load-
bearing. The domain on the left is where the external load 
is supported by the coarse grain framework. The total 
porosity is given above each frame. The fourth frame from 
the left shows a sub-volume of the fine particles that 
retains the porosity of the pure fine grain specimen. 
 
2.4 Elastic bounds of binary mixtures 
 
When only the elastic modulus of the constituents and 
their volume fractions are specified (without geometric 
details of their arrangements) it is possible to predict only 

the upper and lower bounds of the elastic moduli of the 
granular material (Avseth et al. 2008). 

The best bounds for an isotropic linear elastic 
composite, giving the narrowest possible range without 
specifying aspects of the geometries of the constituents, 
are the Hashin-Shtrikman bounds (Mavko et al., 2009). 
These bounds can be used to compute the estimated 
range of average mineral modulus for a mixture of mineral 
grains, as well as to compute the upper and lower bounds 
of mineral and pore fluid phases. The HS bounds can only 
be applied if each constituent is assumed to be isotropic, 
linear, and elastic. The resulting expressions for a 
mixture’s elastic modulus are:  
when : 
  

 
    

 
             

 
 
where KSH and GSH are the effective bulk and shear 
modulus of the pure fine grain specimen. K1 and G1 is the 
grain material bulk and elastic modulus for the coarse 
grains. C is the volume of fines content given by the 
equation: 

 
where β is the volume fraction of fines in the entire mass, 
and nS and nL

 On the other hand, the simplest bounds, but not 
necessarily the best, are the Voigt upper bound simple 
arithmetic average (1910), and the Reuss lower bound 
harmonic average (1929). According to Avseth et al. 
(2008), it is not possible, in a natural state, that a mixture 
of materials can exist that is elastically stiffer than the 
constituent modulus given by the Voigt bound, or 
elastically softer than the modulus given by the Reuss 
bound. The Voigt and Reuss bounds are sometimes 
called the isostrain average and the isostress average, 
respectively. These methods can be used to compute the 
estimated range of the average mineral modulus for a 
mixture of grains, and a mixture of grains and pore fluid. It 
is also important to note that when the Voigt and Reuss 
bounds are calculated for two similar materials, they tend 
to give a narrow envelope almost approaching a single 
line having the HS bounds in between. 

 are the number of fine and coarse grains in 
the mixture respectively. 

 The lower (Reuss) bound proposed in the study by 
Dvorkin and Gutierrez (2001) gives the following:    
 



when : 

 
 
 
3 EXPERIMENTAL STUDY OF ELASTIC MODULI OF 

BINARY MIXTURES 
 
A study of the elastic moduli of binary mixtures was 
conducted at Western University by Reipas (2012) using 
the resonant column device. Sand-glass bead mixtures 
were used in this study and were created by mixing both 
components quantified by mass percentage. Silica sand 
(Ottawa silica sand, Barco 49) was chosen for the fine 
particles, since it has less variable grain size compared to 
natural sands, and it is commonly used as benchmark 
material in laboratory experiments. Solid glass beads 
were chosen to represent the coarse diameter particles. 
The beads were chosen to represent the coarse diameter 
particles (or inclusions) due to their constant shape and 
roughness, their uniformity, and similar mineralogical 
composition to Ottawa silica sand. The engineering 
properties of these materials are summarized in Table 1. 
The ratio of d50 
 

for these materials is approximately 1:40. 

Table 1. Properties of Ottawa Sand and Glass Beads.   
Property Ottawa Sand (Barco 49) Glass Beads 

e 0.476 min 0.351 
e 0.727 max 0.923 
G 2.66 s 2.50 
D 0.16 10 9.90 
D 0.26 50 10.26 
D 0.30 60 10.35 

 
Six different samples were prepared by varying the sand 
content as follows: 0%, 36.3%, 54.5%, 76.4%, and 100% 
(percentages by mass of the sample). The size of all of 
the samples were 50 mm in diameter by 100 mm in 
height. Air pluviation from a constant drop height was 
selected to prepare repeatable and uniform samples. The 
estimated initial properties of each mixture are presented 
in Table 2. 

 
Table 2. Initial properties of the sand-glass bead mixtures. 

% Glass 
beads % Sand Void Ratio, e Density 

(kg/m3

100 
) 

0 0.653 1513 
63.7 36.3 0.188 2151 
45.5 54.5 0.306 1978 
23.6 76.4 0.430 1835 

0 100 0.563 1702 
 

To study the elastic properties of the mixtures, all samples 
were tested using the resonant column apparatus (RCA). 
Samples were tested from low to high confinement 
pressures (60 kPa, 120 kPa, and 240 kPa). At each 
confinement pressure, the samples were subjected to low 
and high levels of strains, and for each level of strain one 

torsional resonant frequency test was performed. A 
summary of the shear modulus (Gmax

 

) obtained from the 
RCA for each sample can be found in Table 3.  

Table 3. Gmax values measured with the RCA (at an 
average strain of 2.5 x10-5

% Glass 
beads 

). 
% 

Sand 
G (MPa) 

at 60 kPa 
G (MPa) at 

120 kPa 
G (MPa) at 

240 kPa 
100 0 99 126 159 
63.7 36.3 220 380 550 
45.5 54.5 115 176 252 
23.6 76.4 93 135 198 

0 100 81 120 175 

Figure 5 shows the correlation between the variation of 
the void ratio with increasing sand content and the 
variation of density again with increasing sand content. 
There is an apparent inflection point between 30% and 
40% sand content, where the mixtures are clearly divided 
into two domains, as would be expected from percolation 
theory. 
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Figure 5. Mixture void ratios and densities with respect to 
sand content. 
 
Figure 6 shows a graphical representation of the variation 
of minimum void ratio for the binary mixtures. This graph 
has been created with the theory developed by Lade et al. 
(1998). 
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Figure 6. Theoretical variation of minimum void ratio in 
binary packing with % fines. 

Their study suggested that, for binary packings, the 
minimum void ratio is reached when the voids of the large 
particles are completely filled with small particles. Using 
the theoretical approach presented in Fig. 6, it is possible 
to estimate a value for the inflection point. This estimation 
matches that of the experimental data shown in Figure 5.       

4 RESULTS AND INTERPRETATION 

To predict the values of small strain shear modulus Gmax 
obtained for the binary mixtures in Section 3, using the 
RCA machine, three empirical equations were used. 
These equations are well-known and have proven to be 
very useful to estimate the shear modulus of sands. The 
first equation is the Hardin equation (1966), and Gmax

 

 can 
be calculated with the following equation: 

 
 
where Gmax

The second equation used was the Modified Hardin 
Equation, which was developed by Witchmann and 
Triantafyllidis (2009) to account for different grain size 
distributions. 

 is in MPa, σ′ is effective mean pressure in 
kPa, and e is void ratio. The constants A, a, n depend on 
particle shape (round or angular grains).  

 
 

where Gmax, σatm, and σ′, are in kPa. The constants A, a, 
and n are all modified as functions of the coefficient of 
uniformity (Cu

The third equation used takes into account a 
correlation between G

). 

max

 

 and the relative density, and 
was also developed by Witchmann and Triantafyllidis 
(2009).  

 
 

where the constants are AD = 177000, aD = 17.3, nD

Rock-physics models provide a link between seismic 
properties (e.g. S-wave/P-wave velocity, elastic modulus, 
and bulk modulus) and geological parameters (e.g. sorting 
of particles, granular content, porosity, void ratio, 
saturation). These models are widely used in the 
hydrocarbon industry to estimate seismic response to 
assumed reservoir and overburden properties and 
conditions. Rock-physics models are adjusted to site-
specific conditions to help deduce rock properties away 
from existing wells and to assist early exploration and 
evaluation.  

 = 
0.48.  

To explore the abilities of these models for binary 
mixtures, the effective-medium model proposed by 
Dvorkin and Gutierrez (2001), already explained in 
Section 2.4, was also used to predict the elastic properties 
of the binary mixtures composed of Ottawa sand and 
glass beads, described in Section 3.  

Along with equation 6, equations 11 and 12 were used 
to estimate the total porosity (Φ) and the mixture density 
(ρdry
 

): 

 

 

where ρSS and ρsh are the glass beads (coarse particles) 
and Ottawa sand (fine particles) grain-material densities, 
respectively. The values of grain-material densities used 
in this study were 2579 kg/m3 (glass) and 2643 kg/m3

Using equations 4 to 6 (HS bound) and equation 7 
(Reuss Bound), proposed by Dvorkin and Gutierrez 
(2001), the values of shear modulus were calculated. The 
values of K

 
(quartz) (Mavko et al., 2009).  

SH and GSH
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 depend on the measurements 
done on the 100% Ottawa sand and 100% glass beads 
samples in the RCA for each confining pressure (see 
Table 3). 

 



Figure 7. Measured and estimated values of Gmax
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Figure 8. Measured and estimated values of Gmax

The values of K

 at 240 
kPa. 

1 and G1 used in this study were 45550 
kPa and 25000 kPa, respectively. Comparison of the 
estimated and measured Gmax

From both figures, at the inflection point between 30% 
and 40%, the HS lower bound provides a better 
approximation for the shear modulus of the experimental 
binary mixtures. For this concentration the Reuss bound 
and Hardin equation give approximately the same values 
of G

 values for two pressures 
(120 and 240 kPa) are shown in Fig. 7 and 8. 

max. For sand contents higher than 40%, the best 
approximation of Gmax
 

 is given by the Reuss bound.     

5 DISCUSSION 
 
Figure 9 shows a comparison between the estimated and 
measured values of small strain shear modulus (Gmax). 
Both, HS and Reuss bounds, equations [4] and [7] 
proposed by Dvorkin and Gutierrez (2002) can be used to 
establish upper and lower limits to estimate Gmax values 
for the binary mixtures. In all cases, traditional equations 
for Gmax

 

 (equations 8 to 10) are less successful for 
estimating shear modulus for these types of materials. 
Since these equations have been developed for well-
graded and poorly graded soils this is not wholly 
surprising. Also evident in Figure 9, is that the closeness 
of these limits depends on the fines content of the 
mixture. For the sand content of 36.6% the HS bound lies 
close to the measured value with the RCA, while the 
Reuss bound prediction slightly overestimates the shear 
modulus. According to Dvorkin et al. (1999), if there is a 
large difference in the elastic contrast between two 
elements, the HS lower bound can precisely predict 
experimental measurements, which may be why the HS 
bound better estimates the elastic properties of the binary 
mixtures. 
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Figure 9. Comparison of estimated vs. measured values 
of Gmax
 

. 

After the application of the effective-medium model and 
the analysis of the tested binary mixtures, it was possible 
to determine the threshold value where the mixture 
bifurcates into the two domains. This threshold value, also 
known as the percolation threshold or transitional fines 
content, was shown to be between 30% and 40% sand 
content. These findings agree with the work done by Lade 
et al. (1998), Yang et al. (2006), Polito and Martin (2001), 
and Thevanayagam et al. (2002), where they reported a 
transition value from fine-domains to coarse-domains 
close to 35%, 30%, 35%, and 40%, respectively.  

Another important soil mechanics concept that ties into 
the percolation theory is that of force chains. Force chains 
are interconnected groups of particles that carry most of 
the interparticle forces within a soil matrix; those particles 
that do not actively participate in the force-chains are 
believed to act as stabilizers of the main force chains 
(Peters and Berney, 2010).  

For the packing data shown in Figure 5, with the 
addition of sand up to the inflection point, the void ratio 
decreases making the density of the mixtures increase. 
This physical phenomena can be explained by using the 
TFC concept. The fine particles start to fill the voids 
between the large particles up to the critical point. Just 
before reaching the critical point, the mechanical 
behaviour of the mixtures is governed by the properties of 
the glass beads/coarse particles (for a sand content from 
0% to 36% approx.). Right after the critical point, the 
amount of fines starts to be sufficient to break the 
connection between the large particles, which are then 
responsible for carrying the interparticle forces within the 
soil matrix. 

Previous work on binary mixtures has clearly shown 
the effects of the relative particle sizes on the achievable 
packing densities and the threshold of fines content 
(Bouvard and Lange, 1991). Although the links between 
sample packing, coordination number and elastic moduli 
have been demonstrated previously, the complexity of the 
behaviour for gap-graded and binary mixtures requires 
further investigation. Bideau et al (1985) explained the 
form of the volumetric fraction v. void ratio curves for 
binary mixtures (e.g. Figure 5) in the following way. The 
left hand side of the curve (low fines content) shows void 



ratio decreases because of global particle segregation; 
fine grains preferentially fill the pore space of the coarse 
grain packing. The right hand side of the curve shows the 
response of what is known as the 'wall effect' due to the 
large particles. Changes in the number of particles (and 
hence coordination number) actively involved in force 
chains due to these structural transitions appear to be 
controlling the elastic response of the materials. 

      
6 CONCLUSIONS 
 
An investigation of the elastic properties of binary 
mixtures through the application of an effective-medium 
model used in rocks mechanics was carried out. The 
comparison with an experimental study conducted on 
binary mixtures and existing predictive methods for small 
strain elastic moduli in the literature has been performed. 
The links between percolation threshold and the change 
in the elastic behavior of the binary mixtures were 
investigated and the findings suggest that is possible to 
correlate the small strain shear modulus (Gmax

 

) variation 
with the change of fine content in the mixtures. By 
completing these types of analyses this may lead to better 
engineering practice and improved soil mechanics 
knowledge of the behavior of gap-graded soils. Further 
work needs to be conducted on binary mixtures with 
different particle size ratios to expand and confirm these 
findings. 
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