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ABSTRACT 
A continuum-based analysis for laterally loaded rigid monopiles supporting offshore wind turbines in multilayered elastic 
soil is presented.  The principle of virtual work is used to derive the equilibrium equations maintaining appropriate force 
balance between the pile and soil. The equilibrium equations are solved using an iterative numerical scheme to obtain 
the pile and soil displacements. Pile responses obtained using this method match well with those of equivalent finite 
element analysis.  
 
RÉSUMÉ 
Cet article présente une analyse réalisée en milieu continu, de pieux rigides chargés latéralement dans un sol élastique 
multicouches qui supportent des éoliennes situées en mer. Le principe du travail virtuel est utilisé pour dériver les 
équations d'équilibre qui permettent le maintien de l'équilibre de la force exercée entre le pieu et le sol. Les équations 
d'équilibre sont résolues avec un système numérique itératif et permettent le calcul des déplacements du pieu et du sol. 
Les résultats obtenus grâce à cette méthode correspondent bien à ceux obtenus avec une analyse par éléments finis. 
 
 
1 INTRODUCTION 
 
Monopiles for offshore wind turbines are large diameter 
(4-6 m) cylindrical piles installed into the sea bed to a 
depth of about 5-6 times the diameter (Klinkvort and 
Hededal 2014). These piles are mostly subjected to lateral 
forces and moments at the head arising from wind, wave, 
and water currents. Several researchers performed 
centrifuge tests and finite element (FE) analysis of 
monopiles in sandy and clayey soils to investigate their 
load-displacement behavior (Klinkvort and Hededal 2012, 
Haiderali et al. 2013), and reported that monopiles 
undergo deformations typically by rigid-body rotation 
about a pivot point. 

For monopiles supporting an offshore wind turbine, the 
allowable lateral head displacement and rotation is an 
important design criterion. The methods available for 
analysis of laterally loaded rigid piles are mostly based on 
the theories of ultimate capacity (Broms 1964a, b, 
Meyerhoff and Ranjan 1972, Zhang et al. 2005) that 
cannot be used to obtain the load-displacement response 
under serviceability conditions. In the literature, very few 
studies exist that focus on the load-displacement 
response of rigid piles under serviceability conditions 
(Higgins et al. 2013, Motta 2013). 

In this study, a new method for analysis of laterally-
loaded rigid monopiles in multilayered, elastic soil is 
presented in which rational soil and pile displacement 
fields ensuring compatibility and continuity are assumed 
to obtain the equilibrium equations using the principle of 
virtual work. The equilibrium equations are solved 
analytically and numerically to calculate the pile head 
displacement and rotation.  Pile responses obtained from 
this analysis are found to be in good agreement with 
those obtained from equivalent three-dimensional (3D) FE 
analysis. The advantage of the analysis is that it produces 
results fast and without any cumbersome input of pile 
geometry and mesh, as required in 3D FE analysis. 

   
2 ANALYSIS 
 
The analysis is based on the principles of continuum 
mechanics in which the soil is treated as a 3D elastic 
continuum.  
 
2.1 Problem definition 
 
Figure 1 shows a rigid monopile in a multilayered elastic 
soil deposit with each layer i characterized by Lame’s 

constants si and Gsi and thickness Hi  Hi1 (H0 = 0).  
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Figure 1. A laterally loaded rigid monopile in multilayered 
elastic soil deposit 

 



 

Each layer has infinite radial extent and the bottom 
(n

th
) layer has infinite extent in downward vertical direction 

as well.  The pile head is at the ground surface and 
subjected to a horizontal force Fa and a moment Ma, and 
the base is embedded in the n

th
 layer.  No slippage or 

separation between the pile and the surrounding soil or 
between the soil layers is allowed.  The goal of the 
analysis is to obtain head displacement and rotation 
caused by the action of Fa and/or Ma for which a 

cylindrical (r- -z) coordinate system is assumed. 

 
2.2 Force diagram of pile-soil system 
 
Figure 2 shows the force diagrams of the pile and soil 
separately. The interaction between soil and pile is 
captured by the distributed soil reaction force p acting 
along the pile shaft and by the concentrated shear force 
Sb at the pile base.  The distributed reaction p is the 
resistance offered by the soil layers surrounding the pile 
against the lateral movement and rotation of pile, and the 
base shear force Sb is the resistance offered by the soil 

layers beneath the pile against its lateral movement. 
These force diagrams are used to obtain the equilibrium 
equations.  
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Figure 2. (a) A rigid pile-soil system, (b) forces acting on 
pile, and (c) forces acting on soil 
 
2.3 Displacement profile of the rigid pile 
 
For a pile undergoing displacement typically by rigid body 
rotation and translation, it is reasonable to assume a 
linear displacement profile (Figure 3) as 
 

   h hw z w z                                              [1] 

 
where w is the lateral pile displacement varying with depth 

z, wh is the pile head displacement, andh is the 

clockwise rotation of pile axis in the vertical plane in which 
Fa acts. 

 
2.4 Application of principle of virtual work to rigid pile 

 

The principle of virtual work states that WE  WI = 0 

where WE is the external virtual work and WI is the 

internal virtual work.  Applying the principle of virtual work 
to the rigid pile (Figure 2b), and using Eq. [1] results in  
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Figure 3. Assumed rigid pile displacement profile 
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Since wh  0 and h  0 as wh and h are arbitrary, 
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2.5 Displacements, strains and stress profile for soil 

 
The displacements in soil are assumed as 

 

    r ru w z r cos                                           [5] 

 

      u w z r sin                                       [6] 

 

 0zu                                       [7] 

 

where r and  are dimensionless displacement functions 

varying with radial coordinate r, and  is the angle 
measured clockwise from a vertical reference section (r = 

r0) that contains the applied loading. The functions r(r) 

and (r) ensures perfect contact between pile and soil 

and that the displacements within the soil mass (due to 
pile displacement) decrease monotonically with increase 

in radial distance from the pile axis. Therefore, r and  
varies between 1 at the pile-soil interface and 0 at infinite 
radial distance from the pile.   



 

Differentiation of the displacement fields in Eqs. [5]-[7] 
leads to the following strain-displacement relationships for 
the soil mass (contractive strains are assumed positive) 
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The elastic stress-strain relationship is given by 
 

2lmlm s snn lmG                                             [9] 

 

where s and Gs are Lame’s constants for a soil layer, lm 
and εlm are the stress and strain tensors, respectively, and 

lm is the Kronecker’s delta expressed in indicial notations. 

 
2.6 Application of principle of virtual work to soil  

 
Application of the principle of virtual work to the soil mass 
(Figure 2c) results in 
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where εlm is the virtual strain in the soil mass due to the 
virtual displacement applied on the rigid pile.   

Substituting Eqs. [8] and [9] in Eq. [10] to calculate 

lmεlm modifies Eq. [10] as 
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where w, r and  are the first variation of the 

functions w(z), r(r) and (r). 

 
2.7 Soil displacement profile 
 

Equating the terms associated with r in Eq. [11] to zero 

because of its non-zero variation in the interval rp ≤ r ≤ , 

the following differential equation is obtained: 
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along with the boundary conditions r = 1 at r = rp and r = 

0 at r = . The dimensionless constants 1, 2 and 3 in Eq. 
[12] are given by 
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in which 1  n nt t . Note that the n
th

 (bottom) layer is 

artificially split into two sub-layers above and below the 
pile base, and the sub-layer below the pile base is 

denoted by the subscript n+1 (i.e., Hn = Lp and Hn+1  ). 

Equating the terms associated with  in Eq. [11] to 
zero, the following differential equation is obtained 
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along with the boundary conditions θ = 1 at r = rp  and θ 

= 0 at r = . The dimensionless constants 4, 5 and 6 in 

Eq. [16] are given by 
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2.8 Pile displacement profile 

 

Equating the terms associated with w and (dw/dz) to 

zero in Eq. [11], the following equation is obtained: 
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where 
 

 

 






 


 





  
    
    

 
 
    
   





2 2

2 2 2

; 1,2, ,
2

; 1
2

p

p

si r

r

i

sn r p

r

G rdr i n

t

G rdr r i n  

[21] 

 

 

   

 




 




 


    

  

 

 



   
     
    

   


  


 

 



22

2

2

2 2

1
( 3 )

p p

p p

p

r
i si si si

r r

r
si r si r

r r

si si r

r

dd
k G r dr G r dr

dr dr

dd
dr G dr

dr dr

G dr
r

 

[22] 

 

The variation of w(z) in the interval Lp ≤ z   is not 

known a priori because of which the integrand in the 

integral between z = Lp and z =  in Eq. [20] must be 

equal to zero. This result in 
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The displacement wn+1 in the soil at infinite vertical 

distance is zero. Therefore the solution of Eq. [23] 
satisfying this boundary condition is given by 
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At z = Lp, wn+1  0. Therefore, from Eq. [20] the 

following boundary condition is obtained 
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Differentiating Eq. [24], substituting it in Eq. [25], and 
using the linear displacement function of pile (Eq. [1]) 
results in 
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where wb is the displacement at the pile base.  

The integrand for each of the integrals in Eq. [20] 
associated with individual layer i (i.e., for each of the 

intervals Hi1 < z < Hi) must equate to zero (because wi  
0), which produces the following differential equation for i

th
 

layer: 
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Differentiating the displacement function of pile (Eq. 

[1]) and substituting in Eq. [27] produces 
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Substituting, Eqs. [26] and [28] into Eqs. [3] and [4] 

and using Eq. [1] results in 
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Eqs. [29] and [30] relate the head displacement and 

rotation of the rigid pile with the applied force and 
moment. 

 
2.9 Solution algorithm 
 

Pile head displacement wh and rotation h can be 

calculated using Eqs. [29] and [30].  However, the soil 
parameters ki and ti must be known to calculate wh and 

h.  The parameters ki and ti depend on the functions r 

and  which, in turn, depend on wh and h through the six 

dimensionless constants 1-6. Thus, an iterative algorithm 
is required to obtain solutions.  

Initial guesses on 1-6 are made using which r and  
are determined by solving Eqs. [12] and [16] iteratively 
using the finite difference method.  From the obtained 

values of r and , ti and ki are calculated using Eqs. [21] 
and [22].  The calculated values of ki and ti are used to 

obtain wh and h. Using the calculated pile head 

displacement and rotation, 1-6 are calculated using Eqs. 

[13]-[15] and [17]-[19].  The calculated values of 1-6 are 
compared with the assumed initial values and if the 
differences are more than the tolerable limit of 0.001, the 
same set of calculations are repeated with the calculated 

values of 1-6 as the initial guesses. Iterations are 

continued until the values of 1-6 between successive 
iterations fall below 0.001. A flowchart of the solution 
algorithm is given in Figure 4. 
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Figure 4. Solution flowchart  
  
2.10 Modification of soil moduli 
 

Randolph (1981) found that soil Poisson’s ratio s has a 

minimal effect on lateral pile response and therefore the 
pile response can be investigated by using an equivalent 
shear modulus which includes the effect of both soil 
elastic constants:  
 

 * (1 0.75 )s s sG G                                        [31] 

 
However, it is observed that using the assumed soil 

displacement field given in Eqs. [5]- [7] the pile response 
is excessively stiff for soil Poisson’s ratio close to 0.5.  To 
avoid this excessive stiffness, Guo and Lee (2001) 

recommended setting s = 0 irrespective of its actual 

value (which is the same as setting s = 0) and indirectly 

take into account the effect of s through Eq. [31].   

 
3 RESULTS 

 
The accuracy of the proposed analysis method is verified 
by comparing the pile response obtained from this 
analysis with that obtained from equivalent 3D FE 
analysis performed using the software ABAQUS (2010). 

Figure 5 shows the normalized pile displacement 
profile for a large diameter rigid pile embedded in a three-

layer soil profile  the details of pile and soil properties 
and the applied loading are shown within Figure 5.  A 
difference of 8.96% occurred in the pile head 



 

displacement between the results obtained from the 
present analysis and FE analysis. 

   

 
Figure 5. Comparison of normalized pile displacement as 
obtained from present analysis and FE analysis for a rigid 
pile in three-layer soil subjected to a lateral force and 
moment at the head  
 

Figure 6 shows the normalized radial displacement 
ur/rp in soil at the ground surface (i.e., for z = 0) as a 
function of normalized radial distance in the direction of 

the applied load (i.e., for  = 0) for the pile shown within 

Figure 5.  Both the results obtained from the present 
analysis and FE analysis are plotted.  As evident, the 
match between the results obtained from the present 
analysis and FE analysis are quite well. 

 
4 CONCLUSIONS 
 

A new continuum-based analysis of rigid circular 
monopiles for wind turbines embedded in multilayered 
elastic soil and subjected to a horizontal force and a 
moment at the pile head is presented.  The equilibrium 
equation for the pile displacement and soil displacements 
are obtained using the principle of virtual work.  
Comparisons between the results obtained using the 
developed analysis and those from equivalent FE analysis 
show that the proposed new method works rather well.  
The new method requires much less computational effort 
when compared with the computational efforts required in 
FE analyses. 

 
Figure 6. Comparison of normalized radial soil 
displacement at the surface obtained from present 
analysis and FE analysis for a rigid pile in three-layer soil 
subjected to a lateral force and moment at the head 
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