
Non-Darcy and radiative effects on convective 
embankment modeling 
 
Marc Lebeau & Jean-Marie Konrad 
Department of Civil and Water Engineering – Laval University  
Quebec, QC, Canada 
 
 
 
ABSTRACT 
The design of convective embankments generally hinges on the use of numerical models that describe buoyancy-driven 
flow and heat transfer in porous media. A review of the literature reveals that most of the models used in the study of 
convective embankments assume that heat transfer occurs by conduction and convection, and that airflow can be 
described with Darcy’s law. This is inconsistent with recent experimental evidence that suggests that radiative heat 
transfer is significant, and that Darcy’s law does not apply to rockfill materials. In response to these shortcomings, a new 
model is herein derived to account for both radiative heat transfer and non-Darcy effects. Once validated, the model is 
used to gain insight into the relative importance of radiative heat transfer and non-Darcy flow on the thermal response of 
a typical railway embankment. The radiative heat transfer is shown to be greater during the summer months. This 
increases the temperature at the base of the embankment, which in turn, increases the wintertime convective heat 
transfer. This additional heat extraction does not counteract the effect of the radiative heat transfer, and the wintertime 
temperatures below the embankment are shown to be warmer than that computed without radiative and non-Darcy 
effects. 
 
RÉSUMÉ 
La conception des remblais convectifs s’effectue généralement avec des modèles numériques qui décrivent le transfert 
de masse et de chaleur en milieu poreux. Une revue de la littérature révèle que la plupart des modèles considèrent que 
le transfert de chaleur s’effectue par conduction et convection, et que le transfert de masse peut être décrit avec la loi de 
Darcy. Cette approche est contraire aux résultats d’études expérimentales récentes qui démontrent que le transfert de 
chaleur par radiation est important, et que la loi de Darcy ne s’applique pas aux matériaux d’enrochements. En réponse 
à ces lacunes, l’article présente un nouveau modèle qui tient compte du transfert de chaleur par radiation et des effets 
non Darcien. Le modèle est utilisé afin d’établir les effets de l’écoulement transitionnel et du transfert de chaleur par 
radiation sur le comportement thermique d’un remblai de chemin de fer typique. Il est démontré que le transfert de 
chaleur par radiation augmente la température à la base du remblai en période estivale, ce qui intensifie le transfert de 
chaleur par convection en période hivernale. Cette extraction de chaleur supplémentaire s’avère toutefois insuffisante 
pour contrer l'apport de chaleur par radiation et les températures hivernales à la base du remblai sont plus élevées que 
celles calculées sans effets radiatifs et non Darcien. 
 
 
 
1 INTRODUCTION 
 
The growing necessity for natural resources has prompted 
a renewed interest in Arctic and sub-Arctic regions, and 
led to the development of new transportation corridors. 
The design of the transportation lines within these 
corridors is challenged by the presence of permafrost, 
which is sensitive to minor changes in heat transfer at the 
ground surface. Overlooking the effect of these manmade 
structures on the surface heat balance can result in 
significant thaw, and settlement, of the underlying perma-
frost. Over the years, a number of techniques have been 
proposed to mitigate the effect of embankment construc-
tion on thaw settlement. These techniques include the use 
of air ducts, thermosyphons, and convective embank-
ments that enhance wintertime heat extraction. In this 
latter technique, the embankments are specifically engi-
neered to enhance the wintertime heat extraction that 
occurs as convection currents cool the underlying perma-
frost. The design of these convective embankments un-
avoidably hinges on our understanding of buoyancy-
driven flow and heat transfer in coarse-grained porous 

media. This knowledge has been integrated into a number 
of numerical models for studying the behavior of convec-
tive embankments in permafrost-laden regions of Canada 
(Arenson et al. 2006; Lebeau and Konrad 2009; Fredlund 
and Zhang 2012), China (Lai et al. 2003; Sun et al. 2009; 
Pei et al. 2014; Zhang et al. 2005), and the United States 
of America (Goering and Kumar 1996, 1999; Goering 
2003). All of these models assume that heat transfer 
occurs by conduction and convection, and most consider 
that airflow can be described with Darcy’s law. This is 
inconsistent with recent experimental evidence that 
suggests that radiative heat transfer is significant, and that 
Darcy’s law does not adequately describe the relation 
between superficial flux and gradient in coarse-grained 
soils. More precisely, Fillion et al. (2011) determined the 
effective (combined conductive and radiative) thermal 
conductivity of four samples of crushed-rock with effective 
particle diameters ranging from 0.09 to 0.15 m. The 
effective thermal conductivity at ambient temperatures 
was found to be 97 to 209% greater than that ascribed to 
heat conduction. The effective thermal conductivity was 
also shown to increase with increasing effective particle 



diameter. Zhang et al. (2013), on the other hand, 
determined the airflow characteristics of four samples of 
crushed-rock with effective particle diameters ranging 
from 0.07 to 0.22 m. The tests were conducted in a wind 
tunnel, and yielded nonlinear relations between the 
superficial flux and gradient. These relations were shown 
to conform to the Darcy-Forchheimer law, which accounts 
for both viscous and inertial effects. 

In response to these shortcomings, the paper pro-
poses a new model for studying the behaviour of con-
vective embankments that accounts for both non-Darcy 
and radiative effects. Once validated, the model is used to 
establish the importance of non-Darcy flow and radiative 
heat transfer on the response of a typical railway embank-
ment. 
 
2 NUMERICAL MODEL 
 

2.1 Theory 
 
The general mechanisms through which heat is trans-
ferred in convective embankments are conduction, con-
vection, radiation, and phase changes. Heat conduction 
occurs as hot, rapidly moving or vibrating atoms and 
molecules transfer their energy to neighbouring particles. 
It may also involve a rearrangement of water hydrogen 
bonds. Heat convection, on the other hand, occurs as 
pore fluid moves within the porous media. More precisely, 
forced convection results from the movement of pore fluid 
caused by pressure differences whereas natural convec-
tion, or buoyancy-driven flow, results from the tendency of 
most fluids to experience changes in density with varia-
tions in temperature, pressure, and composition. These 
changes in density interact with the gravity vector to 
produce fluid motion. Hence, as a given mass of fluid is 
heated, it expands and becomes less dense and thus, 
more buoyant than the surrounding fluid. This causes the 
heated fluid to rise above the colder surrounding fluid. 
Heat radiation occurs as electromagnetic waves propa-
gate across pore-air spaces. In the case of phase 
changes, a characteristic amount of energy is absorbed or 
released by the fluid as it transitions from one state to 
another.  

The mathematical description of these processes 
hinges on the combination of the principle of mass and 
energy conservation, the equation of state of the fluid, and 
phenomenological equations describing heat conduction, 
heat radiation, and fluid flow in porous media. The 
resulting partial differential equations differ according to 
the form of these components and the use of simplifying 
assumptions. It is herein assumed that the various con-
stituents of the porous media are in local thermal equilib-
rium and thus, that the temperature of the constituents is 
the same within a representative elementary volume. In 
addition, the pore air is considered to be a gray, emitting, 
and absorbing medium in which radiation travels only a 
short distance before being absorbed. In this case, each 
soil particle is subjected only to the radiation emitted by its 
neighbours, and the radiative heat transfer can be ex-
pressed as a diffusion equation. Under these assump-
tions, the heat transfer equation results from the insertion 
of Fourier’s law and the radiative diffusion equation into 

the equation of energy conservation for a cubic volume of 
porous media with soil-water phase change, from liquid to 
solid, or vice versa. Mostly concerned with the movement 
of pore air, the pore water is herein assumed immobile. 
The mass transfer equation for pore air results from in-
serting the Darcy-Forchheimer law into the equation of 
mass conservation for a cubic volume of porous media. 
The Oberbeck-Boussinesq approximation is considered 
valid in the range of expected temperatures, pressures, 
and compositions. It is thus assumed that viscous dissi-
pation is negligible, and that pore-air properties other than 
density remain constant. Although the pore-air is consid-
ered thermally compressible, its density is treated as 
constant everywhere except in the gravity term of the 
momentum equation. The Oberbeck-Boussinesq approxi-
mation also implies that the equation of state can be 

linearized around reference density 
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result in the following equations for non-Darcy convective 
and radiative heat transfer in isotropic porous media: 
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  x,z  are the spatial 

coordinates, 
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o
 is the reference volumetric thermal 

expansion coefficient of air, 
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 is the volumetric fraction 

of liquid water, 
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a,o
 is the reference dynamic viscosity of 

air, and 
 
r

a
 is the density of air. It must be emphasized 

that these equations are very similar to those found for 
laminar convective heat transfer in porous media (Lebeau 
and Konrad 2009). The difference essentially lies in the 
constitutive relations used to describe soil permeability 
and thermal conductivity. 



2.2 Constitutive relations 
 
2.2.1 Water freezing function 

The relation between the volumetric fraction of liquid 
water and temperature is often referred to as the water 
freezing function. As highlighted above, the first derivative 
of this function with respect to temperature forms an 
integral part of the apparent volumetric heat capacity 
term. Although the actual shape of the function has very 
little effect on computed temperatures, it must allow for an 
exact computation of the change in volumetric enthalpy 
over a specific temperature range. In order to meet this 
requirement, the water freezing function is herein ex-
pressed as follows (Mottaghy and Rath 2005): 
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where 
  
w » T

L
-T

S( ) 2 is a curve shape parameter, 
 
T

L
 is 

the fusion (liquidus) temperature, 
 
T

S
 is the solidification 

(solidus) temperature, and 
  
q

w,f
,q

w ,u
 are the volumetric 

fractions of liquid water in the frozen and unfrozen soil, 
respectively. This form of equation is also used to de-
scribe the conductive component of effective thermal 
conductivity and volumetric heat capacity of the soil. 
 
2.2.2 Radiative component of thermal conductivity 

The radiative component of thermal conductivity depends 
on the transparency, or penetrability to electromagnetic 
waves, of the different constituents of the porous medium. 
In the case of transparent constituents, the electromag-
netic waves pass through the medium without any radia-
tive heat transfer. In contrast, the electromagnetic waves 
will be absorbed at the surface of a medium with com-
pletely opaque constituents. Gray, or optically thick, con-
stituents provide an intermediate response by allowing for 
short-range transmission of thermal radiation. In the case 
of a continuous medium, with similar gray absorbing-emit-
ting and non-scattering constituents, the integral form of 
the radiative heat transfer equation can be converted into 
the following diffusion equation (Siegel and Howell 1992): 
 

     [3] 

 

where  is the radiative heat flux vector, 
 
a

R
 is the 

Rosseland mean absorption coefficient, and s  is the 

Stefan-Boltzmann constant. Assuming that the polynomial 

temperature function can be linearized around 
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4 , the diffusion equation reduces to 
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or, then again 
 

     [5] 

 

where 
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r = 16sT
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3( ) 3a
R( )  is the radiative component of 

effective thermal conductivity. This equation was originally 
derived by Rosseland (1936) and is often referred to as 
the Rosseland, or diffusion, approximation. Yet, it must be 
noted that the solid particles are generally opaque and 
that the radiative heat transfer only takes place within the 
voids of the porous medium. In this case, the radiative 
heat transfer can be considered as a local effect that 
occurs between the surfaces of neighbouring particles. 
For the sake of simplicity, let us consider a gray fluid 
confined between two infinite isothermal parallel plates of 
opaque material with gray-diffuse surfaces. In this simple 
geometrical arrangement, the expression for radiative 
heat flux is found by applying Oppenheim’s (1956) 
electrical network analogy for heat exchange between 
diffuse gray bodies (Lienhard and Lienhard 2011): 
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temperature of the different surfaces, respectively. 
Multiplying the numerator and denominator by the plate 
separation distance, which is herein set equal to the 
particle diameter, and simplifying the temperature function 

such that  
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For plates with similar surface emissivity, the equation 
reduces to 
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This equation has often been used to describe the 
radiative heat flux between particle surfaces in discontin-
uous, or discrete models, which treat the porous medium 
as an assembly of units, or cells, of idealized geometry 
(Argo and Smith 1953; Beveridge and Haughey 1971). A 
number of similar equations have also been derived for 
differently shaped surfaces (Wakao and Kato 1969). 
Although quite accurate, the discontinuous models are 
often criticized for neglecting the effect of long-range 
radiation that propagates through the voids of the porous 
medium. The pseudo-continuous model circumvents this 
limitation by representing the porous medium as a random 
assembly of solid particles, and solving the radiative heat 



transfer equation as if the medium were a continuum. In 
the case of a parallel-plane layer of absorbing, emitting, 
and scattering medium, the expression for radiative heat 
flux is found by applying Hamaker’s (1947) extension of 
the Schuster-Schwarzschild approximation (Chen and 
Churchill 1963): 
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where  a  and  b  are the absorption and scattering coeffi-

cients, respectively. Given that the medium is treated as a 
continuum, these coefficients are not directly related to 
physical properties such as porosity and particle surface 
emissivity. Although these coefficients can be determined 
experimentally, Vortmeyer (1978) established a theoreti-
cal relation between the pseudo-continuous and discontin-
uous models that leads to specific expressions for 

parameters  a  and  b . Using these expressions yields 
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where  L  is the long-range radiation transmission parame-
ter, which is a function of porosity and particle surface 
emissivity (Vortmeyer and Börner 1966). As expected, this 
equation reduces to equation [8] as the long-range 
radiation parameter approaches zero. A number of 
studies have shown that this equation provides accept-
able predictions of radiative heat flux in the absence of 
conduction and convection (Vortmeyer 1978). Hence, 
unless otherwise stated, the radiative component of 
thermal conductivity is herein expressed as follows 
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It must be noted that Fillion et al. (2011) have shown that 
the long-range radiation parameter can be set equal to 
zero in predictions of the effective (combined conduction 
and radiation) thermal conductivity of crushed-rock 
samples. 
 
2.2.3 Apparent intrinsic permeability 

Darcy’s law is the simplest model for describing airflow in 
porous media. Initially derived from empirical evidence, 
the law states that the superficial flux is a linear function of 
the potential energy gradient, such that 
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where  K  is the intrinsic permeability. Unfortunately, this 
linear function is only valid at small values of superficial 
flux. At larger fluxes, the form drag due to solid particles 
increases, and the linearity transitions into a nonlinear 
relation. In this non-Darcy flow, the appropriate form of the 

momentum equation reads as follows (Joseph et al. 
1982): 
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where  is the Euclidean norm, and 
 
c

F
 is the dimension-

less form-drag constant. The first term on the right-hand 
side of this equation is Darcy’s viscous term whereas the 
second term is Forchheimer’s inertial term. The nonlinear 
nature of this equation can be relegated to the perme-
ability term by rearranging the equation as follows 
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or, then again 
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where  is the apparent intrinsic perme-

ability. The flux-dependent apparent intrinsic permeability 
can be substituted by a potential energy gradient depen-
dence by introducing the flux equation into the expres-
sion for the apparent intrinsic permeability. In so doing, 
the apparent intrinsic permeability reads (Knupp and Lage 
1995): 
 

  [16] 

 
Although the expression may seem daunting, it is of great 
practical importance as it expresses the nonlinear charac-
ter of the flow in terms of the independent variable. 

 
3 NUMERICAL SOLUTION 
 
The equations for non-Darcy convective and radiative 
heat transfer are solved with a script-driven partial 
differential equation solver called FlexPDE (PDE 
Solutions Inc. 2011). The solver performs the operations 
needed to turn the partial differential equations, domain, 
and auxiliary definitions into a Galerkin finite element 
model. The working principle of the solver consists in 
assigning trial values of the independent variables to each 
node of the quadratic order triangular elements. These 
values are then substituted into the partial differential 
equations. At this point, the differential equations are not 
exactly satisfied, and errors appear at different points 
within the computational domain. These errors are then

 



multiplied by weighting functions, and integrated over the 
triangular elements using Gaussian quadrature. This 
process is repeated until the trial values minimize the 
error in each integral. In nonlinear time-dependent 
problems, a single modified Newton-Raphson step is 
taken at each time-step while an adaptive procedure 
measures the solution curvature in time, and adapts the 
time step to maintain accuracy. An adaptive mesh 
refinement procedure also measures the accuracy of the 
integrals, and locally refines the mesh until a user-defined 
tolerance is achieved. The solver also allows for additional 
grid refinement criteria. This is particularly useful in the 
apparent heat capacity formulation of soil-water phase 
change in which a pre-generated fixed mesh generally 
results in an unrealistic oscillatory progression of the 
freezing, or thawing, front. In this study, the triangular 
elements are split if the nodal temperature spans a range 

greater than 
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4 CONVECTIVE EMBANKMENT MODELLING 

 
The construction of surface infrastructures in cold regions 
inevitably alters the ground-surface energy balance. 
These changes, although minor, can lead to thawing and 
settlement of underlying permafrost with eventual failure 
of the surface infrastructure. The risks and costs of such 
failures has led to the development of specifically engi-
neered embankments that enhance wintertime heat 
extraction to counteract the changes in ground-surface 
energy balance. Goering and Kumar (1996, 1999) and 
Goering (1996, 1998) were among the first to conduct 
research on wintertime convection in engineered embank-
ments. This work was later followed by a comprehensive 
and well-documented numerical analysis of laminar con-
vective flow in a typical railway embankment (Goering 
2003). The railway embankment problem is herein 
revisited with specific emphasis on the effects of radiative 
heat transfer and non-Darcy flow. 

As in the original study, the physical domain encom-
passes the model railway embankment and its foundation. 
As shown in Figure 1, the thermal boundary conditions 
consist of a combination of prescribed heat fluxes and 
temperatures. Since the upper boundaries are in contact 
with the environment, annual harmonic sine functions are 

determined with surface specific N-factors and air temper-
ature conditions corresponding to those of a subarctic 
discontinuous permafrost zone. These temperature func-
tions are given in Table 1, where time is in Julian days. 
The geothermal gradient is assumed to prevail along the 
lower boundary of the domain whereas centerline symme-
try and negligible heat fluxes dictate that the normal 
component of the temperature gradient be set equal to 
zero on the remaining boundaries. Apart from the pervi-
ous embankment surface, the boundaries are considered 
impervious and the normal component of the pressure 
gradient is set equal to zero. Table 2 summarizes the 
basic engineering properties of the embankment and 
subgrade materials. The remaining properties are taken 
from the literature. For instance, Zhang et al. (2013) 
determined the airflow characteristics of four samples of 
crushed-rock with effective particle diameters ranging 
from 0.07 to 0.22 m. The tests were conducted in a wind 
tunnel, and yielded form-drag constants ranging from 0.17 
to 0.21. Given the similarity of these materials with the 
generic rockfill of the railway embankment, the form-drag 
constant is herein set equal to 0.20. The emissivity of 
igneous, sedimentary, and metamorphic rocks can be 
taken equal to 0.925, 0.966, and 0.952, respectively 
(Salisbury and D’Aria 1992). In this study, the emissivity of 
the generic rockfill material is set equal to an average 
value of 0.942, and the long-range radiation parameter is 
set equal to zero. 

The simulation covers a period of twenty-one (21) 
years, which eliminates the effect of the initial conditions. 
During this period, the adaptive refinement procedure 
resulted in unstructured meshes ranging from 719 (1530 
nodes), in summertime, to 5089 (10318 nodes) in winter-
time. The time-steps, on the other-hand, were largest in 
summer and smallest in winter. Figure 1 shows the 
temperature contour plots and stream traces on specific 
days during the final years of simulation. Specific 
isotherms are also highlighted and compared to those 
previously obtained for laminar convective flow without 
radiation. On July 1st, some of the stream traces are 
shown to enter through the toe of the embankment and 
travel towards the upper surface whereas the remainder 
of the stream traces loop through the core and exit 
through the embankment toe. During this period, the 
isotherms are closely spaced and parallel to the 

Table 2. Engineering properties for the railway 
embankment problem (Goering 2003).   

 Property Foundation Embankment (rockfill) 

Ct,f  [MJ/(m
3
·K)] 2.380 1.020 

Ct,u  [MJ/(m
3
·K)] 3.750 1.020 

D [m] 7.510
-5

 6.310
-2

 

  
k

t ,f

c  [W/(m·K)] 2.300 0.346 

  
k

t ,u

c   [W/(m·K)] 1.500 0.346 

K  [m
2
] 110

-100 
6.310

-7 

a   0.000 0.350 

w,u   0.649 0.000 

d  [kg/m
3
] 1442 1625 

 

Table 1.  Annual harmonic temperature functions for the 
railway embankment problem.   

  N-factor Temperature function (K) 

 Freeze Thaw  

Ta N/A N/A 
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Figure 1. Temperature contour plot and stream traces for 
the railway embankment problem. (a) July 1st. (b) 
November 1st. (c) January 1st. (d) March 1st. Isotherms 
and stream traces are drawn in black and white, 
respectively. 

embankment surface. This steep vertical temperature 
gradient suggests that heat transfer is mostly governed by 
conduction and radiation, with little to no effect of natural 
convection. A comparison of the 273.15 K isotherms 
reveals that the additional radiative heat transfer moves 
the thaw front closer towards the base of the embank-
ment. As of November 1st, the cold ambient air enters 
through the side slope and ascends as it extracts heat 
from the core of the embankment. The shape of the 
isotherms is then strongly influenced by the cold boundary 
temperatures, and the ascending warmer pore-air. On 
January 1st, the stream traces form a series of convection 
currents that move the cold ambient air inwards and expel 
the warmer pore-air. This convective motion produces 
distinctive finger-like isotherms within the embankment. 
By this point, the temperature below the embankment is 
warmer than that obtained for laminar convective flow 
without radiation. As shown later in the paper, this is 
mostly due to the radiative heat transfer and not the effect 
of inertia. On March 1st, remnants of the convection 
currents remain, and the temperature below the embank-
ment is much colder than that below the undisturbed 
surface. Once again, the temperature below the embank-
ment is warmer than that found for laminar convective 
flow without radiation. 

Figure 2 provides additional insight into the effects of 
radiative heat transfer and non-Darcy flow by plotting 
various model results as a function of time. As shown in 
Figure 2b, the mean magnitude of the pore-air fluxes 

within the embankment varies from a minimum of 8.210
-4

 
m/s, on the vernal equinox (in March), to a maximum of 

5.310
-3

 m/s, at the end of autumn (in December). This 
maximum value is slightly larger than that obtained for 
laminar convective flow without radiation. It must also be 
noted that the maximum value of the mean magnitude of 
the pore-air fluxes translates into a Reynolds number, Re, 
of 25. Although there is no general consensus on the 
threshold Reynolds number at which flow deviates from 
Darcy’s law (Zeng and Grigg 2006), it is undeniably 
inferior to 25.  

Figure 2c shows the mean apparent intrinsic perme-
ability as a function of time. As expected, the mean appar-
ent intrinsic permeability tends to decrease with increase-
ing airflow velocity, and it tends to rise with decreasing 
velocities. In this case, the minimum mean apparent intrin-

sic permeability is found to be equal to 5.9210
-7

 m
2
, 

which is only 6% smaller than the stagnant intrinsic 
permeability. These subtle changes in intrinsic perme-
ability should have very little effect on the convective heat 
transfer within the embankment. 

Figure 2d shows the mean effective thermal conduc-
tivity as a function of time. The effective thermal conduc-
tivity is shown to be consistent with its mathematical 
formulation as it varies with the cubic power of tempera-
ture. In essence, the effective thermal conductivity de-
creases during wintertime and increases with warming 
temperatures. This inevitably leads to a greater amount of 
heat transfer during the warmer months. In this case, the 
average mean effective thermal conductivity is found to be 
equal to 0.60 W/(mK) with minimum and maximum values 
of 0.55 and 0.65 W/(mK), respectively. This average value 
of effective thermal conductivity is 73% greater than the 



thermal conductivity ascribed to heat conduction. It must 
be emphasized, however, that the minimum effective 
thermal conductivity is only 15% smaller than the max-
imum value. 

Although the effective (combined conduction and 
radiation) thermal conductivity is much greater that the 
thermal conductivity ascribed to heat conduction, its 
annual fluctuations are relatively small. This results in 

 

 
 
Figure 2. Annual variation of thermal and hydraulic 
characteristics in the railway embankment problem. (a) 
Ambient temperature. (b) Mean magnitude of the pore-air 
flux within the embankment. (c) Mean apparent intrinsic 
permeability of the embankment material. (d) Mean 
effective thermal conductivity of the embankment material. 

slightly more heat input into the embankment during the 
summer months. As previously indicated, the additional 
heat transfer increases the temperature at the base of the 
embankment, which in turn, increases the convective 
motion. This supplemental convective heat extraction 
does not counteract the effect of the radiative heat 
transfer, and results in warmer temperatures below the 
embankment during the winter months. This effect would 
inevitably be compounded by greater annual temperature 
variations. 
 

5 CONCLUSION 
 

Most numerical models for studying the behavior of con-
vective embankments have been derived for laminar 
convective flow. As such, these models have assumed 
that heat transfer occurs solely by conduction and convec-
tion, and that airflow can be described with Darcy’s law. 
Yet, recent experimental evidence has shown that radia-
tive heat transfer is significant, and that Darcy’s law does 
not adequately describe airflow in rockfill materials. Moti-
vated by these shortcomings, a new model is proposed 
for studying the behavior of convective embankments 
including non-Darcy and radiative effects. As formulated, 
the model accounts for most of the relevant heat transfer 
mechanisms, and requires very little additional computa-
tional effort. Once validated, the model was used to 
further our understanding of the thermal response of a 
typical railway embankment. In accordance with previous 
findings, the prime effect of non-Darcy flow was to 
slowdown the convection motion in regions where airflow 
velocity was most significant. The thermal radiation, on 
the other hand, was shown to be most significant during 
the summer months. This additional heat input increased 
the temperature at the base of the embankment, which in 
turn, increased the wintertime convective motion. This 
convective heat extraction was found to be insufficient to 
counteract the effect of the radiative heat transfer, and 
warmer temperatures were shown to prevail below the 
embankment during the winter months. 
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