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ABSTRACT 
Global optimization consists in finding the best solution to a problem that may contain multiple sub-optimal solutions. 
Although it dates back to the origins of geometry, it is now extensively applied in various fields of engineering. This paper 
focuses on the deterministic algorithms that have been implemented in a generalized global optimization application. The 
application integrates the algorithms into a comprehensive modeling environment that uses the JUPITER API to 
communicate with any process model with batch processing capabilities. After a brief description of its structure and 
algorithms, the capabilities of the application are illustrated by finding the hydraulic property functions of unsaturated 
silica sand through inverse modeling of a multistep outflow experiment with both suction and cumulative outflow 
measurements. The canonical differential evolution algorithm is shown to be particularly well suited to this optimization 
problem in which the objective function is topographically complex. The estimated hydraulic property functions are also 
shown to be in excellent agreement with those independently determined using steady-state methods. 
 
RÉSUMÉ 
L’optimisation globale consiste à trouver la meilleure solution à un problème pouvant contenir une multitude de solutions 
non optimales. Bien qu'elle remonte aux origines de la géométrie, l’optimisation est maintenant utilisée dans différents 
domaines de l'ingénierie. Cet article porte sur les algorithmes déterministes qui ont été mis en œuvre dans une appli-
cation d'optimisation globale généralisée. L'application intègre les algorithmes dans un environnement de modélisation 
complet qui utilise l'IPA JUPITER afin de communiquer avec tout modèle pouvant exécuter des traitements par lots. 
Après une brève description de sa structure et de ses algorithmes, les capacités de l'application sont illustrées en 
trouvant les propriétés hydrauliques d’un sable de silice non saturé par modélisation inverse d’un essai de laboratoire en 
régime transitoire avec mesures de la succion et du volume d’eau extrait. La version canonique de l’algorithme à 
évolution différentielle s’avère particulièrement bien adaptée à ce problème d'optimisation dont la fonction objective est 
topographiquement complexe. Les propriétés hydrauliques ainsi estimées s’avèrent être en excellent accord avec ceux 
déterminés indépendamment en utilisant des méthodes de mesure en régime permanent. 
 
 
 
1 INTRODUCTION 
 
Inverse modelling is one of the most important and well-
studied subjects in science and engineering. In contrast to 
conventional modelling, it starts with the results and then 
determines the model parameters. To do so, the inverse 
problem is formulated as an optimization problem in which 
an objective function describes the differences between 
the observed and estimated model responses. In many 
cases, the objective function contains multiple local mini-
ma in which local optimization algorithms tend to get 
stuck. In an attempt to circumvent this difficulty, the global 
optimization algorithms search the entire parameter space 
in a more or less intelligent manner. The literature pro-
vides a number of different global optimization algorithms 
that can be divided in two main classifications: determin-
istic and stochastic algorithms. In the deterministic algo-
rithms, the model parameters are fixed and unique 
whereas the parameters of stochastic algorithms are 
treated as random variables with joint posterior probability 
distributions. This paper focuses on the deterministic 
algorithms that have been implemented in a Generalized 
Global Optimization Application, called GGOA. All of 
these algorithms are based on evolutionary strategies in 

which the underlying idea is that alternative, or candidate, 
solutions play the role of individuals in a population that 
evolves within the environment defined by the objective 
function. These include the genetic algorithm, the canoni-
cal differential evolution algorithm and its self-adaptive 
variants. 

The objectives of the paper are to (1) describe the 
structure and algorithms of the application, (2) present a 
versatile and precise experimental apparatus for conduct-
ing outflow experiments, (3) illustrate the capabilities of 
the application in estimating the hydraulic properties of 
uniformly-graded porous media from a multistep outflow 
experiment, and (4) evaluate the ability of Richards’ 
equation to describe flow in the multistep outflow experi-
ment. 
 
2 DESCRIPTION OF THE APPLICATION 
 
The purpose of the application is to find the model param-
eters that provide the best solution to a given linear or 
nonlinear problem. In order to accomplish this task, the 
best parameters are estimated by minimizing an objective 
function that expresses the difference between observed 
and computed model response. In a common approach, 



the objective function is defined as the sum of weighted 
least-squares 
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vations of jth type. The differences between observed and 

estimated (or simulated) values, , are 

called residuals. As formulated, the objective function is 
most appropriate when the residuals are uncorrelated and 
heteroscedastic (do not have the same variance). In order 
to provide independent residuals, the weighting factors 
should ideally be set equal to the inverse of the error 
variance-covariance matrix (Draper and Smith 1998). In 
the case of uncorrelated residuals, the weight matrix is 
diagonal and each non-zero element of the weight matrix 
equals one over the variance of measurement error, 
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In highly nonlinear problems, the objective function 
may be topographically complex, and contain multiple 
local minima. This makes it far more difficult to find the 
global minimum. To circumvent this difficulty, GGOA 
adopts a post-hybridization strategy in which a global 
optimization algorithm searches the entire parameter 
space, and a local optimization algorithm follows the path 
of least resistance towards the best solution. In so doing, 
the application inherits the advantages of both search 
methods. Once it has identified the best parameters, 
GGOA performs an extensive error analysis that provides 
statistical information about the residuals, and the ability 
to discriminate among model alternatives.  

 
2.1 Application structure 

 
Figure 1 shows the different steps of the generalized 
global optimization application, and its interaction with the 
process model. The application essentially consists of 
three main steps: (1) Initialize the problem by reading the 
application controls, model execution command lines, 
parameter bounds and observations. (2) Optimize the 
objective function. In this step, the optimization algorithm 
proposes new parameters that are transferred to the 
process model. The model is executed, the computed 
response is extracted, and the objective function is 
calculated. These steps are repeated until the end of the 
optimization process. (3) Compute relevant statistics. The 
application is written in Fortran, and uses JUPITER API 
modules (Banta et al. 2006) to input and exchange data, 
and interact with any process model with batch process-
ing capabilities. 
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Figure 1. Flowchart showing the structure of the applica-
tion, and its interaction with the process model.  
 
2.2 Global optimization algorithms 
 
The literature provides numerous different evolutionary 
algorithms in which candidate solutions play the role of 
individuals in a population that evolves within the environ-
ment defined by the objective (or fitness) function. Based 
on the fitness of the various candidate solutions, some are 
selected to seed the next generation by applying a 
number of mechanisms inspired by biological evolution 
(crossover, mutation, and selection). These algorithms 
may generally be differentiated by their representation of 
the candidate solutions. For instance, the genetic algo-
rithm uses strings to represent the candidate solutions 
whereas real-valued vectors are used in the differential 
evolution algorithm. Both of these types of algorithms are 
implemented into GGOA. 
 
2.2.1 Genetic algorithm, GA 

GAs were introduced by John H. Holland in the latter 
portion of the twentieth century, and have since then been 
applied to a number of inverse modelling problems in 
geotechnical engineering (McCombie and Wilkinson  
2002; Levasseur et al. 2008). GAs generally differ in their 
modes of selection, crossover and/or mutation. The 
current version of GGOA implements the most recent 
form of the PIKAIA algorithm (Charbonneau 2002). In this 
and the other global optimization algorithms, the 
parameters are defined in a floating-point interval, such 

that 
  
b

k
Î 0,1éë ùû. This implies that the parameters must be 



transformed prior to model execution, and data exchange. 
In this particular algorithm, each parameter vector (or 
individual) is encoded as a chromosome-like structure 
using 1-digit base 10 integers. In the case of a n-

dimensional parameter vector with 
 
n

d
 significant digits (or 

genes), the encoding process produces a one-
dimensional integer array (or chromosome) of length 

 
n ´ n

d
. In order to avoid any bias, the algorithm starts by 

initializing each of the one-dimensional arrays with a 
random number generator. The fitness of each individual 
is then calculated and used to rank the individuals from 

best to worst. By convention, the rank 
  
R Î 1,n

p
é
ë

ù
û
 where 

 
n

p
 is the number of individuals in the population, is set 

equal to 1 for the fittest individual. The following sections 
describe the most important components of the PIKAIA 
algorithm. 

Parent selection technique 

Although there are many different types of selection 
techniques, PIKAIA uses what is known as roulette wheel 
selection. In this technique, each individual is thought of 

as a pocket on a roulette wheel, where the size of the 
pocket is proportional to its probability of selection. Given 

that 
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fdif  is the relative fitness of 

the lth individual with relative fitness differential fdif, its 
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are drawn independently by generating a random number 

in the 
 

0,1éë ùû interval. In this manner, individuals with lesser 

fitness may be selected as parents. This may be 
beneficial as less fit individuals may include some genes 
that could prove useful following the crossover process. In 
general, however, individuals with greater fitness are 
more likely to be selected as parents. Therefore, genes 
that result in greater fitness will become more abundant in 
the next generation. 

Crossover operators 

Once individuals have been selected as parents, they 
must take part in the act of reproduction in order to 
produce offspring. The most common way to generate 
these offspring is through an operation called crossover. 
Although there are many kinds of crossover, PIKAIA 
incorporates both one-point crossover and two-point 
crossover. These crossover operators act on the pair of 
parent-chromosomes to produce a pair of offspring-
chromosomes. The one-point crossover operator begins 
by randomly selecting a cutting point along the 

chromosomes by generating an integer in the 
  
1,n´n

d
éë ùû  

interval. Once cut, the chromosomal fragments located 
right of the cutting point are exchanged from one parent to 
the other, and concatenated to the fragments left of the 
cutting point. This complex operation is best understood 
through an example. Let us therefore consider two 
prototypical parents in a two-dimensional parameter 

space: 
 
b

1
,b

2( )
1
 = (0.256359,0.489238), and 

 
b

1
,b

2( )
2
 = 

(0.134787,0.731686).  Encoding these parents with six 
significant digits produces the following parent-
chromosomes: 256359489238 and 134787731686. If the 
randomly selected crossover point is equal to three, the 
parent-chromosomes read as follows 256 | 359489238 
and 134 | 787731686. The sections of chromosome from 
each parent are then used to form the following offspring-
chromosomes: 256787731686 and 134359489238. In the 
case of two-point crossover, two cutting points are ran-
domly selected along the chromosomes. The fragments 
located in between these points are then exchanged in a 
manner otherwise identical to that described for one-point 
crossover. 

As can be seen from the example for one-point 
crossover, this type of operator has a positional bias 
whereby the probability of a gene being swapped is 
dependent on the position of that gene within the chromo-
some. Given that positional bias generally decreases as 
the number of crossover points increases, PIKAIA adds a 
probabilistic test to the crossover operation through which 
either one-point or two-point crossover is chosen with 
equal probability. It is to be noted that crossover does not 
always occur but is rather a consequence of a proba-
bilistic test, which depends on a user defined crossover 
rate. To ensure more diversity, and to avoid premature 
convergence, the crossover rate is generally set equal to 
0.85. In the event that crossover does not occur, the 
parent-chromosomes are copied directly as offspring-
chromosomes. 

Mutation operator 

The offspring-chromosomes are now subjected to muta-
tion in order to preserve diversity from one generation to 
the next. In general, mutation operators involve a probabi-
lity that an arbitrary gene will be changed from its original 
state. PIKAIA incorporates two mutation operators known 
as uniform mutation and creep mutation. In these muta-
tion operators, the replacement of each of the genes of a 
chromosome is a consequence of a probabilistic test that 
depends on a user defined mutation rate, which will be 
discussed below. In the event of mutation, the uniform 
mutation operator substitutes the gene by a random 

integer in the 
 

0,9éë ùû  interval. In the case of creep muta-

tion, the gene is either subjected to a unit increment or 
decrement and this, with equal probability. If the gene to 
be incremented is a 9, it becomes 0 and the gene located 
to its left is incremented by unity or, then again, it is also 
set equal to 0 if the gene happens to be a 9. This process 
is repeated as many times as needed or until the left 
boundary of the substring is reached, in which case the 
genes are reverted to their initial values. Given that 
uniform mutation results in greater exploration of the 
parameter space, it is either used separately or in con-
junction with creep mutation. 

Although the mutation rate may be set constant, 
experience has shown that the selection of an optimal 
mutation rate is extremely problem-dependant. In this 
context, it may be preferable to use a dynamically adjust-
ed mutation rate that offers the advantage of self-adapting 
the balance between the need to explore the parameter 
space at early stages, and to refine well adapted popula-



tions at the end of the evolution process. In order to adjust 
the mutation rate, PIKAIA monitors the degree of cluster-
ing of the population at the end of each generational 
iteration. The degree of clustering is either evaluated in 
terms of the normalized fitness difference between the 
best and median individuals 
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or, the metric distance between the best and median 
individuals 
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As long as the degree of clustering is superior to 0.05 and 
inferior to 0.25, the mutation rate remains equal to its 
initial value, which is usually set equal to 0.005. Whenever 
the degree of clustering falls below the lower limit (or 
above the upper limit), the mutation rate is increased (or 
decreased) by a factor of 1.5, and may not exceed user 
defined maximum and minimum limits. Although fairly 
simple, mutation is essential in preventing premature con-
vergence to a local optimum. 

Survivor selection technique 

Survivor selection, often called replacement, determines 
which offspring will be allowed in the next generation. As 
opposed to parent selection, which is typically stochastic, 
survivor selection is most often deterministic. For 
instance, the generational survivor selection technique 
consists in selecting only the offspring. In such a case, 
individuals have a fixed lifetime equal to a single genera-
tion. Steady-state survivor selection differs from the 
generational technique in that the offspring are inserted 
into the population as soon as they are generated. A 
deletion strategy then defines which individual of the 
population will be replaced by the offspring. PIKAIA 
incorporates two different deletion strategies: delete-worst 
and delete-random. Under the steady-state-delete-worst 

technique, the least fit member of the population is 
deleted and replaced with the offspring. In the steady-
state-delete-random technique, the offspring replaces a 
randomly selected individual. Hence, the fittest individual 
is only guaranteed to survive under the steady-state-
delete-worst technique. Yet, a strategy known as elitism 
may be used with the other techniques to ensure that the 
fittest individual is passed on to the next generation. It is 
to be noted that only the full generational survivor selec-
tion technique lends itself to a parallel implementation as 
the fitness of the offspring are computed in a single step. 
 
2.2.2 Differential evolution algorithm, DE 

Storn and Price (1995) introduced DE as a simple direct 
search approach for minimizing nonlinear and non-
differentiable functions. It has since then proven itself in a 
number of competitions (Price 1996) and geotechnical 

problems (Zhao et al. 2015). In contrast to GAs, which are 
inspired by genetic evolution, DE was entirely derived 
from geometrical considerations. As with other evolution-
ary algorithms, DE generates new parameter vectors (or 
individuals) by perturbing existing individuals. In order to 
do so, every lth individual of the mth generation is 
represented by a n-dimensional parameter vector, 

. The first parameter values are 

chosen randomly so that the 
 
n

p
 vectors of the population 

cover the entire parameter space. For each target vector, 

, the difference of one or two pairs of randomly 

selected parameter vectors is used as the source of 
random variation (or mutation) for a non-mutated 
parameter vector. As described in the following sections, 
selection of the non-mutated parameter vector depends 
on the type of mutation operator. Once this task is 

completed, the mutated vector, , is combined with the 

target vector to form a trial vector, . This operation, 

referred to as crossover, is followed by a fitness biased 
survivor selection technique whereby the fittest of the trial 
and target parameter vectors is passed on to the next 
generation. The following sections describe the various 
mutation and crossover operators implemented in GGOA. 

Mutation operator 

The mutated vector can be created with a number of 
different mutation operators. Of all mutation operators, the 
most useful are (Das and Suganthan 2011): 
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mutually exclusive integers in the 
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 interval, which 

must be different from the target vector index.  F  is a 

scaling factor in the 
 

0,2éë ùû  interval that controls the 

amplification of the differential variation, and  is the 

fittest (or best) parameter vector of the mth generation. 
The performance of the various mutation operators 

depends on the selection of an appropriate scaling factor. 
As highlighted by Storn and Price (1997), scaling factors 
smaller than 0.4 and larger than 1.0 are only occasionally 
effective when using the rand/1 mutation operator. 
Although an appropriate scaling factor may be determined 
by trial-and-error, it is often preferable to use a dynami-
cally adjusted scaling factor that self-adapts to the need 
for local and global search capabilities. Such strategies 



are included in a number of self-adaptive variants of DE 
(Das and Suganthan 2011). For instance, the jDE 
algorithm self-adapts the scaling factor of the rand/1 
mutation operator (Brest et al. 2006). The strategy 
consists in using either the scaling factor of the lth 
parameter vector for the mth generation or a randomly 

generated scaling factor that lies in the 
 

0.1,1éë ùû  range. The 

replacement of the scaling factor is a consequence of a 
probabilistic test with a ten percent replacement 
probability. In the case of the SaDE algorithm, the scaling 
factor of the lth parameter vector is randomly selected 

within a normal distribution, 
  
N 0.5,0.09éë ùû , and constrained 

to the 
 
0,2( ùû  range (Qin and Suganthan 2005). This 

strategy is either applied to the rand/1 or current-to-best/1 
mutation operators. In fact, SaDE probabilistically selects 
the mutation operator of a given parameter vector. The 
replacement probability depends on the success rate of 
each of the mutation operators for the parameter vector, 
and is updated at every fiftieth generation. 

Crossover operator 

To complement the mutation operator, DE also uses a 
crossover operator that builds trial vectors with the target 
and mutated parameter vectors. In the uniform (or 
binomial) crossover operation, used in GGOA, the re-
placement of each of the parameters of the target vector 
is the consequence of a probabilistic test that depends on 
a user-defined crossover constant. In the event of 
crossover, the operator substitutes the parameter of the 
target vector with that of the mutated vector. In order to 
ensure that the trial vector obtains at least one parameter 
of the mutated vector, crossover is also forced to occur at 
a randomly generated index. As with other control param-
eters, the crossover constant is problem-dependent and 
should be determined by trial-and-error. Alternatively, one 
may use self-adaptive variants of DE. The adaptive 
strategy of the jDE algorithm consists in using either the 
crossover constant of the lth parameter vector for the mth 

generation or a randomly generated constant in the 
 

0,1éë ùû 

range. The replacement of the crossover constant is a 
consequence of a probabilistic test with a ten percent 
replacement probability. In the case of the SaDE algo-
rithm, the crossover constant is randomly selected within 

a normal distribution, 
  
N m,0.01éë ùû , at every fifth generation. 

The mean, m , of the normal distribution is initially set 

equal to 0.5, and is updated every twenty-fifth generation 
using the crossover constants that resulted in successful 
trial vectors. 
 
2.3 Local optimization algorithm 
 
Nelder and Mead (1965) introduced the downhill simplex 
method for minimizing functions without derivatives. In 
essence, the algorithm defines a simplex that consists of 

  n +1 vertices, where  n  is the number of parameters. It 
then evaluates the objective function at each vertex, and 
replaces the worst vertex by moving this vertex through 
the opposite face of the simplex. The method also 
expands or contracts the simplex as needed. GGOA uses 

the best solution of the global optimization algorithm as 
one of the vertices, and randomly choses the other 
vertices within the range defined by the parameter 
bounds. It must be noted that the algorithm is pro-
grammed in accordance with that found in Numerical 
Recipes (Press et al. 1996). 
 

2.4 Statistical indicators 
 

A number of indicators are used to evaluate the ability of 
the model to realistically represent the simulated system. 
The first of these indicators is the calculated error 
variance (Cooley and Naff 1990): 
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and its ninety-five percent confidence interval (Ott and 
Longnecker 2010): 
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where 
  
n

J
= n

J ,jj=1

m

å  is the total number of observations, 

and 
  
c

n
J

-n, 0.025

2 , 
  
c

n
J

-n, 0.975

2  are the upper and lower tail 

values of the chi-square distribution. As pointed out by Hill 
and Tiedeman (2007), the calculated error variance is 
sometimes criticized for not sufficiently representing the 
drawbacks associated with increasing the number of 
estimated parameters. The Akaike information criterion, 
AIC, and Bayesian information criterion, BIC, were 
specifically developed to address this criticism. These 
statistics consist in adding the maximum likelihood 

objective function, , to various terms that become 

large when the number of estimated parameters 
increases. The AIC and BIC statistics are herein 
calculated as (Carrera and Neuman 1986): 
 

   [7] 

and 

  [8] 

 

It must be emphasized that the AIC and BIC statistics 
support the principle of parsimony in that, everything 
being equal, the model with the smallest number of 
parameters is the most acceptable (Russo 1988). 
 

3 SAMPLE CASE STUDY  
 
The use of rigorous models that describe flow in porous 
media is often hindered by a lack of knowledge of the 
unsaturated hydraulic properties. While many laboratory 
and field methods are now available for determining these 
highly nonlinear properties, most of the methods require 
that experiments reach steady-state or equilibrium condi- 
tions. This can make measurements time consuming and 
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Figure 2. Diagram and photographs of the outflow experiment apparatus. 
 
 

expensive. Rather than measuring the properties directly, 
the inverse or parameter estimation method estimates the 
unsaturated hydraulic properties from transient experi-
ments that allow for considerable time saving, and greater 
flexibility in the choice of boundary conditions. These 
experiments are carried out under controlled conditions 
with measurements of various flow variables. A process 
model that simulates the transient flow regime of the 
experiment is then iteratively solved to find the best 
parameters of the functional relations that describe the 
unsaturated hydraulic properties.  

Whisler and Watson (1968) were among the first to 
suggest using the inverse method to estimate the parame-
ters of functional relations describing the hydraulic proper-
ties of unsaturated porous media. More than a decade 
later, Zachmann et al. (1981) applied the inverse method 
to a numerical solution of Richards’ equation for artificially 
generated transient drainage experiments. A number of 
studies have since then focused on the inverse modeling 
of outflow experiments. Additional background information 
can be found in Hopmans et al. (2002). 
 
3.1 Materials and methods 
 

3.1.1 Soil sample 

Outflow experiments were conducted with standard 20/30 
silica sand manufactured by Unimin Corporation. Features 
of the sand particles include chemical purity, low organic 
content, high particle sphericity, and a narrow particle-size 
distribution with predominant particle-sizes ranging from 
600 to 850 μm. The relative density of the silica sand, 

  
D

R
= 2.65 , is found to be similar to that of pure quartz. 

To establish an initial condition of complete saturation, 
the sample was prepared by wet pluviation with de-aired 
and de-mineralized water. The sample was then compact-
ed by placing the cell on a vibratory table for eight (8) 
minutes. This process resulted in a completely water 
saturated sample with a porosity of 0.35.  
 
3.1.2 Multistep outflow experiment 

Overview 

The experimental apparatus was based on the axis 
translation technique. In contrast to most studies, 
however, the pneumatic pressure was kept constant while 

applying a series of step decreases of pore-water 
pressure at the lower boundary of the pressurized cell. 

After preparing the sample by wet pluviation, the 
suction was increased to a value that slightly exceeded 
the air-entry value of the porous media. This resulted in a 
continuous gaseous phase, which reduced the problems 
associated with the occurrence of non-uniform flow at the 
start of the multistep experiment (Hopmans et al. 1992). 
The sample was subsequently subjected to five (5) con-
secutive computer-controlled steps of increasing suction. 
The applied values of suction were 0.91, 1.12, 1.31, 1.51, 
and 1.71 kPa. Cumulative outflow and suction within the 
cell were sampled simultaneously at 10 s intervals. As is 
generally recommended, approximately 100 validated 
space-time flow variables of each measurement type were 
selected exponentially. 

Details 

Figure 2 shows a diagram of the experimental apparatus 
with gas and water flow controls. The core of the 
apparatus consisted of a large cell with two (2) micro-

tensiometers inserted at   H 2  and   H 4  from the bottom 

of the soil sample. Though the quality of data from both 
micro-tensiometers was satisfactory, suction within the 

cell was taken from that measured at   H 4 . The internal 

dimensions of the cell, 11.64 cm in height and 12.54 cm in 
diameter, were set so as to comply with the representative 
elementary volume (REV) of a wide range of cohesionless 
materials. In addition to the acrylic cylinder, the cell 
consisted of two (2) acrylic receptacles that were assem-
bled into polyvinyl chloride bases. The lower receptacle 
was fitted with a low impedance sintered glass plate. 
During sample preparation, the upper receptacle and 
base were substituted by a polyvinyl chloride extension 
collar. As can be seen from the photographs of Figure 2, 
the micro-tensiometers were laterally offset to minimize 
flow disturbance. Apart from the precisely machined brass 
tubes, the micro-tensiometers were made of commercially 
available components. To obtain rapid response times, 
the micro-tensiometers were connected to temperature 
compensated differential pressure transducers by short 
pieces of tubing. The pressure transducers were calibrat-
ed with liquid manometers. The observed standard devia-
tion of suction measurement error was equal to 0.076 
kPa. 



A precision pressure regulator was used to set a 
constant pneumatic pressure while suction at the lower 
boundary was controlled with a miniature E/P transducer 
and a proportional-integral-derivative controller. Suction 
measurement at the lower boundary was carried out with 
a limited range differential pressure transducer, which 
allowed for a precise dynamic control of suction. 

To obtain a fully computer-automated system, the 
bottom boundary of the cell was connected to a pressur-
ized vessel, which was mounted on an electronic balance. 
A layer of silicon fluid was used to inhibit air dissolution 
into the de-aired and de-mineralized water of the vessel. 
The measurements provided by the electronic balance 
were converted into cumulative outflow values and cor-
rected for vessel and tubing volume changes as well as 
air density variations. As the experiment was conducted in 
a temperature controlled laboratory environment, air den-
sity was taken to be a function of the measured pressure 
within the vessel. The observed standard deviation of out-

flow measurement error was equal to 5.54810
-6

 m³/m². 
 
3.1.3 Process model 

The movement of water in the unsaturated sand is 
assumed to follow the mixed-form of Richards’ equation 
(Celia et al. 1990), which can be written as follows 
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where q  is the volumetric water content,  t  is the time,  z  

is the spatial coordinate,  k  is the hydraulic conductivity, 

and 
 
h

m
 is the matric head. The lower boundary condition 

consists in a stepwise decrease of matric head, which is 
computed from the imposed values of suction. The 
hydraulic properties, on the other hand, are described with 
the following functional relations (Kosugi 1996): 
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where 
 
q

s
 is the saturated volumetric water content, 

 
q

r
 is 

the residual volumetric water content, 
 
erfc( )  is the 

complementary error function, 
  
h

m,median
 is the matric head 

that corresponds to the median pore radius, s  is the 

standard deviation of the log-transformed pore-radius 

distribution, 
 
k

s
 is the saturated hydraulic conductivity, 

 
k

r
 

is the relative hydraulic conductivity, 
 
Q = q -q

r( ) q
s

-q
r( )  

is the normalized volumetric water content, and  L  is a 
lumped parameter that accounts for both pore tortuosity  

 
 
Figure 3. Convergence graph for the multistep outflow 
problem. 

 
and connectivity. The computed values of matric head at 
the position of the micro-tensiometer are internally con-
verted into suction for inverse modelling purposes. It must 
also be noted that the equations are solved with a script-
driven partial differential equation solver called FlexPDE 
(PDE Solutions 2011). 
 

3.1.4 Inverse modelling 

The inverse or parameter estimation process begins by 
selecting the parameter vector and its associated bounds. 
As is often the case, the saturated volumetric water 
content is set equal to the independently determined 
value of porosity. The parameter vector therefore contains 

parameters 
 
q

r
, 

  
h

m,median
, s , 

 
k

s
, and  L . Each global 

optimization algorithm is then used to find the best 
solution over 50 generations using default algorithm 
settings, and a population of 100 individuals. 
 
3.2 Results 
 

3.2.1 Algorithm performance 

Figure 3 shows the evolution of the objective function with 
the number of model runs. In this particular case, PIKAIA 
converges towards a local minimum whereas the canoni-
cal DE outperforms its self-adaptive variants by reaching 
the minimum in less model runs. The parameters of this 

best solution are 
 
q

r
 = 0.034 

  
h

m,median
 = -0.11 m, s  = 0.18, 

 
k

s
 = 6.6810

-4
 m/s, and  L  = 0.25.  

 
3.2.2 Model performance 

Figure 4 shows the applied lower boundary condition with 
the resulting suction and cumulative outflow. As expected, 
the experimental apparatus provides outstanding control 
of the lower boundary condition. A close inspection of the 
observed values of suction also reveals that the static 
equilibrium condition, illustrated by the dotted line in 
Figure 4, is reached in the first three steps of the 
experiment. Yet, as often occurs in coarse-textured 
porous media, static equilibrium conditions are not 
reached at larger values of suction. The simulated values 



 
 
 

 
are nonetheless in very close agreement with the 
observed data. The residual plots reveal that most of the 
model errors occur at the onset of the stepwise increases 

in suction. The coefficient of determination,   r
2 , provides a 

measure of how closely these residuals lie along a 
straight line. For the data at hand, the coefficient of 
determination is equal to 0.99. This suggests that the 
numerical model quite accurately reproduces the general 
dynamics of the outflow experiment. 

Figure 5 provides a comparison of the estimated 
hydraulic properties with those independently determined 
by Schroth et al. (1996). Although determined with very 
different experimental methods, the estimated water 
retention function shows good agreement with the func-
tional representation of the independent data. It must be 
noted that the independently determined water retention 
data was obtained through the achievement of a sequen- 
 

 
 

  
 

 
 
 

 
ce of static hydraulic equilibrium, and is therefore treated 
as the integral of the soil-water distribution over the height 
of the cell (Schroth et al. 1996). For this reason, large 
differences are observed between the independently 
determined data and its functional relation. The estimated 
relative hydraulic conductivity is also in good agreement 
with the independently determined data, which was 
measured with the steady-state flux control method 
described by Klute and Dirksen (1986). It must be empha-
sized that the estimated value of saturated hydraulic 
conductivity has no physical meaning since the multistep 
outflow experiment was started under unsaturated condi-
tions. These results clearly indicate that the parameter 
estimation method with outflow experiments is an attrac-
tive and rapid alternative to conventional methods, which 
allows for the simultaneous determination of both the 
water retention and hydraulic conductivity functions. 

 

 
 
 

Figure 4. Results of the multistep outflow analysis. (a) Suction. (b) Cumulative outflow. 
 

Figure 5. Hydraulic properties of the 20/30 silica sand. (a) Water retention function. (b) Hydraulic conductivity function. 
 



3.3 Discussion 
 
GGOA performs an extensive error analysis that provides 
statistical information about the residuals, and numerous 
indicators of the ability of the model to represent the 
simulated system. The first of these measures is the 
calculated error variance, which is an indicator of the 
overall magnitude of the weighted residuals and is 
expected to be equal to one when the regression is 
consistent with data accuracy. In this particular case, the 
calculated error variance is equal to 77.19, which implies 
that the residuals are much larger than the error of the 
measurement devices. As the ninety-five percent confi-
dence interval of the calculated error variance is signifi-
cantly larger than one, which is common, it may be 
concluded that the model fit is inferior to that expected 
based on the analysis of error used to determine the 
weighting. Similar conclusions may also be drawn from 
the AIC and BIC information criteria. 

Given that the residuals are not randomly distributed, 
the calculated error variance suggests that model error is 
significant. Vrugt et al. (2003) point out that the majority of 
process models fail this type of adequacy test, and that 
this does not necessarily mean that the estimated para-
meter values are meaningless. In fact, the results of this 
study clearly demonstrate that these types of models 
possess excellent predictive capabilities. Yet, the Akaike 
and Bayesian information criteria may be used to com-
pare alternative models, such as those obtained when 
using functional relations that account for film flow 
(Lebeau and Konrad 2010), or then again, when 
accounting for dynamic nonequilibrium processes 
(Diamantopoulos and Durner 2012). 

 
4 CONCLUSION 
 
Inverse modelling plays an important role in parameter 
estimation and model development. This paper presented 
the structure and algorithms of a generalized global opti-
mization application that possesses the ability to commu-
nicate with any process model with batch processing 
capabilities. The capabilities of the application were illus-
trated through a sample inverse modelling problem in 
which the hydraulic properties of unsaturated silica sand 
were estimated using the results of a multistep outflow 
experiment. Although the estimated hydraulic properties 
were in agreement with those independently determined 
using steady-state methods, the extensive error analysis 
of the application revealed that the process model error 
was significant. 
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