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ABSTRACT  
Reinforced slopes with horizontal layers of geosynthetic reinforcement can have different mechanisms of failure. In this paper 
two major mechanisms of failure of reinforced slopes are investigated. An external mechanism occurs when the critical slip 
surface passes beyond the reinforced zone. Internal mechanisms are characterized by failure surfaces that intersect all of the 
reinforcement layers. For a target value of the factor of safety, and a specific value of the reinforcement length, there is a 
minimum value of the reinforcement tensile strength to generate only external mechanism types. On the other hand, 
increasing the reinforcement length generates an internal mechanism type. In this study, probabilistic slope stability analysis 
of these two mechanisms is carried out using Monte Carlo simulation of slopes with different purely frictional soils and slope 
angles. For a target value of the factor of safety, two sets of charts for external and internal failure mechanism types are 
presented that can be used to calculate probability of failure for simple slopes with purely frictional soils.  
 

RESUMÉ   
Les pentes avec des couches horizontales de renforcement géosynthétique peuvent avoir différents mécanismes de 
défaillance. Dans cet article, deux grands mécanismes de défaillance des pentes renforcées sont étudiés. Un mécanisme 
externe se produit lorsque la surface de glissement critique passe au-delà de la zone renforcée. Les mécanismes internes 
sont caractérisés par des surfaces de rupture qui croisent toutes les couches de renforcement. Pour une valeur cible du 
facteur de sécurité, et une valeur déterminée de la longueur du renforcement, il existe une valeur minimale de la résistance à 
la traction du renforcement pour générer uniquement des types de mécanismes externes. D'autre part, l’accroissement de la 
longueur d'armature génère un type de mécanisme interne. Dans cette étude, l'analyse probabiliste de la stabilité des pentes 
de ces deux mécanismes est réalisée en utilisant une simulation de Monte Carlo de pentes avec différents sols purement 
frictionnels et différents angles de pente. Pour une valeur cible du facteur de sécurité, il est possible de générer un ensemble 
de graphiques pour les types de mécanisme de rupture internes et externes qui peuvent être utilisés pour calculer la 
probabilité de défaillance des pentes simples dans des sols purement frictionnels. 
 
 
  



1 INTRODUCTION 
 

Deterministic reinforced slope stability design charts are 
available in the literature to estimate the tensile strength, 
number of layers and reinforcement length to satisfy a 
minimum factor of safety against the external base sliding 
and internal modes of failure.  

For the case of a simple slope with uniform soil, a given 
friction angle and slope angle, the key design parameter to 
ensure a satisfactory factor of safety against external failure 
modes is the length of the reinforcement. For internal 
stability modes of failure the spacing, allowable 
reinforcement tensile strength and anchorage length are the 
key design parameters to ensure a satisfactory factor of 
safety against these limit states (CFEM 2006).   

Schneider and Holtz (1986), Leshchinsky and Boedeker 
(1989), Jewell (1991) and Bathurst and Jones (2001) used 
limit equilibrium methods to produce stability design charts 
for simple reinforced slopes. These deterministic design 
charts provide the minimum number, length and spacing of 
reinforcement layers required to achieve a target minimum 
factor of safety against collapse.  

Limit-equilibrium methods for reinforced slopes include 
circular slip (Kitch 1994), log-spiral (Leshchinsky and 
Boedeker 1989) and two-part wedge methods (Bathurst and 
Jones 2001). These methods have been modified to include 
the stabilizing contribution of the reinforcement layers. While 
these methods can give quantitative differences in some 
cases, the differences are typically not large in practical 
terms. These limit-equilibrium methods typically provide 
factors of safety against reinforcement rupture and pullout 
modes of failure. The utility of these methods is that they 
can be extended to account for any slope geometry, a wide 
range of geotechnical soil properties and stratigraphy, pore 
water pressure and surcharge loading (Woods and Jewell 
1990; Jewell 1996).  

For more complicated slope problems, commercially 
available computer programs are now used routinely to 
perform these calculations (e.g. Slope/W - Geo-Slope Ltd. 
(2012) and SVSlope - Fredlund and Thode (2011)).  

Kitch et al. (2011) investigated two example reinforced 
slopes designed using deterministic methods based on 
design guidelines published by Tensar (1988). These design 
guidelines are based on a two-part wedge failure surface 
satisfying only force equilibrium. Kitch et al. (2011) showed 
that for a specific uniform length of the reinforcement layers, 
there is a minimum reinforcement tensile strength to ensure 
that the failure mechanism is always external. For tensile 
strength values greater than this minimum value, there is no 
change in the value of the deterministic factor of safety. 
They investigated 18 mechanisms of failure for the two 
example slopes. Two main failure mechanism types were 
identified by Kitch et al. (2011): 1) external stability 
corresponding to cases where critical slip surfaces pass 
beyond the reinforced zone, and 2) internal stability 
corresponding to the case where critical slip surfaces 
intersect all reinforcement layers.  

An important limitation of deterministic methods for 
conventional slope stability analyses is that nominal similar 
slopes may have the same factor of safety but different 
probabilities of failure. This is attributed to random variability 

of soil properties. An estimate of the coefficient of variation 

of friction angle of soil is COV = 0.2 (Phoon and Kulhawy 
1999). Soil properties may also have spatial variability, 
which is not considered in this study. Soil random variability 
is also expected for reinforced soil slopes. However, for 
these slopes there is also the potential influence of random 
variability of reinforcement strength and pullout capacity on 
probability of failure. For example, the variability in the 
available tensile strength of geogrid reinforcement after 
installation may be as high as COV = 0.2 (Bathurst et al. 
2011). Variability in pullout capacity based on project-
specific laboratory testing can be as high as COV = 0.2, and 
using current default models in the absence of project-
specific testing, as high as COV = 0.55 (Huang and Bathurst 
2009). In this study COVT = 0.15 is used for the variation of 
the tensile strength of the geosynthetic reinforcement. 

In this study, external and internal failure mechanisms 
for three example slopes with four, eight and nine layers of 
geosynthetic reinforcement, and a range of soil properties 
and slope geometry are investigated. For each failure 
mechanism type, deterministic and probabilistic analyses 
were carried out and results were discussed. 
 
 
2 DETERMINISTIC SLOPE STABILITY ANALYSIS 

 
2.1 General  
 
The two reinforced slope failure mechanisms introduced 
above are shown in Figure 1a (external failure mechanism) 
and Figure 1b (internal failure mechanism). If the 
reinforcement is strong enough, the critical slip surfaces are 
forced by the reinforcement layers to pass beyond the 
reinforced zone. For a target value of the factor of safety 
and specific slope angle and number of reinforcement 
layers, it is possible to find a minimum value of 
reinforcement tensile strength and reinforcement length 
which will always generate an external failure mechanism 
(Figure 1a). If the minimum tensile strength of the 
reinforcement required to generate only external failure 
mechanisms is kept constant, increasing the length of the 
reinforcement will generate an internal failure mechanism 
(Figure 1b).  

Figure 2 shows the example slope with n = 4 
reinforcement layers. For n = 4 and n = 8 layer cases, the 

height of the slope is H = 5 m and  = 20 kN/m
3
, and for n = 

9 the height is H = 10 m and  = 16 kN/m
3
. For all cases the 

cohesive shear strength component is c = 0.  
In this study, a Visual Basic code was written by the 

authors for the analysis of reinforced slopes. The code 
couples Monte Carlo simulation together with the Simplified 
Bishop’s Method to carry out probabilistic slope stability 
analysis. Hereafter, the code is called PRSS which stands 
for Probabilistic Reinforced Slope Stability code.   
To verify the PRSS code, deterministic results were 
compared with results from the commercially available 
program SVSlope (Figure 3). 

The value of the minimum reinforcement tensile strength 
is plotted against the minimum value of the reinforcement 
length, to generate external failure mechanisms for a slope 



 
 
Figure 3. Comparison of results using PRSS code and 
SVSlope software  
 
 
 

with slope angle  = 45 degrees and for a range of factor of 
safety from Fs = 1 to Fs = 1.7. It can be seen that using 
program SVSlope gives slightly higher values of tensile 
strength to generate external failure mechanisms. This is 
likely due to differences in numerical computational details 
in the two programs. From a practical point of view the 
differences are negligible 

 
2.2 Minimum reinforcement length and tensile strength 
 
Results of deterministic analysis showed that for each value 
of the slope angle and for constant minimum length, Fs is 
constant for values of reinforcement tensile strength greater 
than the minimum value to generate only external failure 
mechanisms. Also, for a constant or lower values of the 
minimum tensile strength, Fs is constant for the values of 
reinforcement length greater than the minimum value to 
generate only internal failure mechanisms.  Therefore, for 
each value of slope angle, it is possible to generate a 
contour plot for a factor of safety for a combination of 
external and internal failure mechanism (Kitch et al. 2011). 
Figure 4 shows this contour plot for the factor of safety 

corresponding to the example slope with  = 45 degrees 
and n = 4. The green region corresponds to external failure 
mechanisms and the yellow region corresponds to internal 

failure mechanisms. The locus of points dividing the two 
regions in Figure 4 corresponds to the minimum values of 
reinforcement tensile strength and reinforcement length to 

generate only external failure mechanisms. For the same 
soil properties and same number of reinforcement layers, 
similar charts can be generated for other slope angles.  

Figure 5 presents minimum values of the normalized 

reinforcement tensile strength (nT/(Htan(f)) versus 
normalized reinforcement length (L/H) for different slope 

angles and n = 4 where f is the factored soil friction angle 

(f = tan
-1

(tan(/Fs)). This figure shows that for a fixed value 
of Fs and increasing slope angle the minimum reinforcement 
tensile strength to generate only external failure 

 
a) 

 
b) 
 
Figure 1. a) External failure mechanism, b) Internal failure 
mechanism 
 

 
 
Figure 2. Example slope with four layers of geosynthetic 
reinforcement (n = 4) and H = 5 m 
 
 
 
 

 
 
Figure 4. Contour plot for Fs values corresponding to 

internal and external failure mechanisms for  = 45 degrees 
and n = 4 reinforcement layers 
 



mechanisms increases while the minimum length to height 
ratio of the reinforcement layers also decreases.  

 
 

3 PROBABILISTIC SLOPE STABILITY ANALYSIS 
 
3.1 General 
 
In this study, probabilistic slope stability analysis of 
reinforced slopes was carried out using the PRSS code that 
couples Monte Carlo simulation and the circular slip 
Simplified Bishop’s Method. The advantage of using the 
PRSS code is that the reinforcement tensile strength is 
treated as a random variable. Also, the software has the 
option to select the Fixed and Floating search method to 
find the critical factor of safety in the probabilistic analysis 
(Javankhoshdel and Bathurst 2014). In this study, the Fixed 
method is used (i.e., find the critical failure first and then 
carry out Monte Carlo simulation), provided the location of 
the critical slip surface is known for both failure mechanism 
cases. However, if random variability of the reinforcement 
tensile strength is not considered, Fixed and Floating 
methods for the case of purely frictional soil slopes give the 
same results.  

In the probabilistic analysis, the two random variables 

are soil friction angle,  and reinforcement tensile strength, 

T. They are assigned COV = 0.2 and COVT = 0.15, 
respectively, as noted earlier.  

Numerical results showed that the random variability of 
the reinforcement tensile strength using the Fixed method 
for external failure mechanism cases did not change the 
value of the probability of failure. However, for internal 
failure mechanism cases where the critical slip surface 
intersects all the reinforcement layers, random variability of 
the reinforcement strength had a very small effect on 
probability of failure. This outcome is demonstrated further 
in the next section.  

In agreement with lessons learned by Javankhoshdel 
and Bathurst (2014), 5000 Monte Carlo simulations were 
shown to be sufficient to compute Pf for the case of two 
random variables in the probabilistic analysis to follow. 
 

3.2 Probabilistic analysis results 
 
3.2.1. External Failure mechanisms 

 
Figure 6 shows the results of the probabilistic slope stability 
analysis of reinforced slopes with external failure 
mechanisms. Different number of reinforcement layers, 
different slope angles and heights of slope and different 
values of unit weight were investigated. The soil in each 

analysis was assigned a mean value of  = 30 degrees. 
Since the value of Fs changes from 1 to 1.7, the factored 

friction angle (f) also changes. For this range of Fs with 
different slope angles, the reinforcement tensile strength 
and reinforcement length must also be changed (Figure 5). 
However, as can be seen in Figure 6, changing the value of 
the slope angle, reinforcement tensile strength, 
reinforcement length and number of reinforcement layers 
does not change the probability of failure. For the same 
mean value of Fs and external failure mechanisms (same 

value of f), Pf is the same. This is because the location of 
the critical slip surface passes beyond the reinforced zone, 
and hence the values of Fs and Pf depend only on the soil 
properties. 

Figure 6 shows that for external failure mechanisms, the 
value of probability of failure depends only on the value of 
the factored friction angle, even with different reinforcement 
properties or different slope angles; therefore a general 
chart can be produced which gives the probability of failure 
for each mean value of the factor of safety and value of the 
factored friction angle. Figure 7 is the probabilistic slope 
stability chart for a range of factored friction angles between 
20 and 45 degrees with 5 degree increment and mean 
values of factor of safety varying from 1 to 2. This chart 
covers a range of slope angles between 30 to 90 degrees 

 
 
Figure 5. Minimum normalized reinforcement tensile 
strength versus minimum normalized reinforcement length 
to generate only external failure mechanisms for reinforced 
slopes with n = 4 reinforcement layers 
 
 

 
 
Figure 6. Probability of external failure mechanism versus 
factor of safety for different slope angles and n = 4  
 
 



and different reinforcement properties which generate 
external failure mechanisms. In this figure, a solid line is 

also presented which is for an unreinforced slope with f = 

45 degrees and  = 45 degrees. This curve falls above the 

curve with the highest values of Pf for f = 45 degrees and 
reinforced slope cases. It can be seen in this figure that for 
the same mean value of Fs, the probability of failure of the 
unreinforced slope case is greater than for reinforced cases 

with the same value of f.  
It should be noted that for unreinforced slopes with 

purely frictional soil, Fs = tan()/tan(). Therefore, for a 
target value of Fs for unreinforced slopes for each value of 

, there is only one slope with slope angle  = . However, 
as mentioned earlier (i.e. Figure 5 and Figure 6), by 
changing the length and tensile strength of the 
reinforcement, it is possible to get the same Fs and Pf in 
reinforced slopes with external failure mechanisms and for 

different values of .  
It can be seen in Figure 7 that for the same mean values 

of Fs, slopes with higher values of f have a higher 
probability of failure. This is because slopes with stronger 

soil (higher f) require reinforcement layers with lower value 
of tensile strength and shorter length to generate external 
failure mechanisms; therefore, the location of the critical slip 
surface changes and the failure surface becomes shallower, 
and shallower slip surfaces correspond to slopes with lower 
values of Fs and higher values of Pf.  
 
3.2.2. Internal failure mechanisms 
 
Figure 8 shows the influence of random variability (COVT = 
0 and 0.15) of the reinforcement tensile strength on 
probability of failure for the same mean values of Fs. In this 

figure, n = 9,  = 45 degrees and  = 30 degrees. It can be 
seen that for the same mean value of Fs, some cases with 
COVT = 0.15 have a small but detectable higher probability 
of failure. However, the difference between the probabilities 

of failure with and without random variability in 
reinforcement tensile strength is negligible. To have more 
accurate results, random variability of soil tensile strength is 
considered in all the simulations.  
Figure 9 presents the effect of number of reinforcement 
layers on probability of failure of an internal failure 
mechanism. In this figure, results are for cases with n = 4, 8 

and 9,  = 45 degrees and friction angle  = 30 degrees. It 
can be seen that for the same value of slope angle and 
friction angle, the number of reinforcement layers has 
negligible effect on the value of the probability of failure.  

Figure 10 shows the effect of slope angle on the 
probability of an internal failure mechanism. The results are 

for cases with n = 9, slope angle 45 ≤  ≤ 76 degrees and  
= 30 degrees. The curves in Figure 10 show that increasing 

, decreases the probability of failure for an internal failure 

 
 
Figure 9. Effect of number of reinforcement layers on 
probability of internal failure mechanism 
 
 

 

 
 
Figure 7. Probabilistic slope stability chart for different 

values of f to generate external failure mechanism 
 
 

 

 
 
Figure 8. Effect of constant tensile strength (COVT = 0) and 
random variability in reinforcement tensile strength (COVT = 
0.15) on the probability of internal failure mechanism 



mechanism. Also, it should be noted that for the same value 
of friction angle, steeper slopes require stronger 
reinforcement layers to achieve the same factor of safety; 
therefore the probability of failure decreases. However, it 
can also be seen in Figure 10 that, the difference in the 
probability of failure for different values of slope angle is 
small (e.g. in the worst case scenario for Fs = 1.2, Pf = 10% 

for  = 76 degrees, while Pf = 16% for  = 45 degrees); 

therefore the case with  = 45 degrees is likely the most 
conservative case for reinforced slopes with internal failure 
mechanisms.  
Results obtained in Figures 9 and 10 demonstrate that it is 

possible to have a general conservative ( = 45 degrees) 
probabilistic slope stability chart similar to Figure 7 for 
reinforced slopes with internal failure mechanisms. Figure 

11 presents such a chart for  = 45 degrees, different values 

of f and 1 ≤ Fs ≤ 2. It can be seen in this figure that for the 

same mean value of Fs, curves with higher f values have a 
higher probability of failure. The reason is that for slopes 

with stronger soil (higher f), tensile strength of the 
reinforcement layers should be lower to meet the same 
target values of Fs. For internal failure mechanisms, 
probability of failure depends mostly on the value of the 

tensile strength of the reinforcement; therefore, increasing f 
increases Pf.  

It should be noted that in Figure 11, the slope angle for 

the curve with the value of f = 45 degrees is  = 50 
degrees, provided that, as mentioned before, factor of safety 
for unreinforced slopes with purely frictional soils is Fs = 

tan()/tan() and for f = 45 degrees the unreinforced slope 
provides the target values of Fs without requiring any 

reinforcement.  Therefore,  = 50 degrees is chosen for f = 
45 degrees in Figure 11. This problem does not arise for 
probabilistic charts for external failure mechanisms, 
provided that the probability of failure is the same for 
different values of slope angle with the same mean value of 
Fs. 

Figure 12 shows a comparison between probabilities of 
failure for the same mean values of Fs for external and 

internal failure mechanism cases and slopes with n = 9,  = 

45 degrees and f = 35 degrees. Figure 12 shows that for 
the same mean value of Fs, probability of failure for external 
failure mechanisms is higher than for internal failure 
mechanisms. It can be concluded that increasing the 
reinforcement length changes the mechanisms of failure 
from external to internal failure type and probability of failure 
decreases. It should be noted that the probabilities of failure 
presented in Figure 11 for internal failure mechanisms are 

upper bound values for  = 45 degrees (Figure 10), and by 
increasing the slope angle the probability of failure 
decreases.  
 
 
 
 

 
 
Figure 10. Effect of slope angle on probability of internal 
failure mechanism 
 
 
 

 
 
Figure 11. Probabilistic slope stability chart for reinforced 
soil slopes with internal failure mechanisms and different 

values of f ( = 45 degrees) 
 

 
Figure 12. Difference between probabilities of failure in 
external failure mechanism and internal failure mechanism 

for the same mean value of Fs and for f = 35 degrees 
 
 
 



4 CONCLUSION 
 
This study reports the results of the probabilistic slope 
stability analysis of reinforced slopes using coupled Monte 
Carlo simulation together with circular slip simplified 
Bishop’s method and implemented within a program (PRSS) 
written by the authors. Two main mechanisms of failure of 
geosynthetic reinforced slopes were investigated; external 
failure mechanisms that comprise of critical slip surfaces 
that pass beyond the reinforced zone and internal 
mechanisms where critical slip surfaces intersect all the 
reinforcement layers.  

The study demonstrates that for the simplifying 
assumptions adopted here, there are minimum values of 
reinforcement tensile strength and reinforcement length 
which will generate only external failure mechanisms. This 
study shows that for tensile strength greater than this 
minimum value, there is no change in the values of factor of 
safety and probability of failure. For constant value of the 
minimum tensile strength, increasing the minimum 
reinforcement length changes the failure mechanism from 
external failure to internal failure type. This change in the 
failure mechanism increases the value of Fs and decreases 
Pf. Contour plots can be generated for different values of 
slope angle that identify the combinations of reinforcement 
tensile strength and reinforcement length that will generate 
each type of failure mechanism (e.g. Figure 4). 

Probabilistic analyses showed that the magnitude of the 
probability of an external failure mechanism is not changed 
by changing the reinforcement properties. Probability of 
failure in these cases depends only on the value of the 
factored friction angle; therefore it is possible to have a 
probabilistic slope stability chart for the case of purely 
frictional soil with external failure mechanisms and for 
different values of the factored friction angle. Comparison of 
probability of failure of reinforced slopes with an external 
failure mechanism type with unreinforced cases with the 
same mean values of factor of safety and same value of the 
factored friction angle shows that the probability of failure of 
the reinforced slopes is lower than for the unreinforced 
slopes. 

For internal failure mechanism cases, the probability of 
failure decreases with increasing slope angle due to the 
change in the reinforcement tensile strength required to 
meet the same target value of factor of safety. However, 

reinforced slopes with  = 45 degrees have the highest 

probability of failure (except for cases with f = 45 degrees 

and  = 50 degrees is used). Nevertheless, a probabilistic 
slope stability chart can be generated for this slope angle 
condition that gives conservative values for probability of 
failure. 

Finally, this study shows that for the same mean value of 
the factor of safety, probability of failure is lower for internal 
failure mechanism cases compared to external failure 
mechanism cases when all other factors are the same.  
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