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ABSTRACT 
A probabilistic slope stability analysis tool for geosynthetic reinforced slopes (and embankments) that combines shear 
strength reduction method (SSR) with probability theory was developed using a finite element method (FEM) source 
code for unreinforced slopes. The original numerical model in combination with the shear strength reduction method and 
Monte Carlo simulation (MC) was first used to compute probability of failure and factor of safety for simple unreinforced 
slopes with purely cohesive and cohesive-frictional soil. The results are compared to those from combined limit 
equilibrium method (LEM) and probability theory recently published in the literature. The results are shown to be in good 
agreement. The validated FEM code was then modified to investigate reinforced slope cases. To verify the new code, a 
general reinforced slope case was examined using the new program and the FEM software package SIGMA/W. 
Displacements and reinforcement strains calculated using both programs agreed well. The utility of the new code in 
combination with Monte Carlo simulation and the shear strength reduction method is demonstrated by a number of 
examples. The general approach applied to reinforced soil slopes is novel and offers a powerful tool to relate 
conventional notions of factor of safety for reinforced soil slopes to margins of safety described by more meaningful 
probability of failure. 
 
 

RESUMÉ   
Un outil d’analyse probabilistique de stabilité de pente pour des pentes et remblais renforcés avec des géosynthétiques, 
qui combine la méthode de réduction de la résistance au cisaillement (SSR) avec la théorie probabilistique, a été 
développé en utilisant un code source pour des pentes non renforcées avec une méthode d’éléments finis (FEM). Le 
modèle numérique original, en combinaison avec la méthode SSR et la simulation Monte Carlo (MC), a d’abord été 
utilisé pour calculer la probabilité de rupture, ainsi que le facteur de sécurité pour des pentes non renforcées simples 
avec des sols purement cohérents et cohérents-frictionnels. Les résultats sont comparés à ceux de la méthode 
d’équilibre limite combinée (LEM) et de la théorie probabilistique publiées récemment dans la littérature. Les résultats 
semblent bien s’accorder. Le code FEM validé a alors été modifié pour investiguer le cas de pentes renforcées. Pour 
vérifier le nouveau code, un cas général de pente renforcée a été examiné en utilisant le nouveau programme et le 
logiciel SIGMA/W (FEM). Les déplacements et les déformations renforcés calculés par les deux programmes 
s’accordent bien. L’utilité du nouveau code, en combinaison avec la simulation MC et la méthode SSR est démontrée 
par un bon nombre d’exemples. L’approche générale appliquée aux pentes renforcées est novatrice et offre un outil 
puissant pour relier les notions conventionnelles de facteur de sécurité pour les pentes renforcées aux marges de 
sécurité décrites par des probabilités de rupture plus significatives. 
 
 
 
1 INTRODUCTION 
 
Geosynthetic-reinforced slopes (and embankments) are 
widely used in geotechnical engineering. Since the early 
1980s, conventional deterministic limit equilibrium 
methods (LEMs) for unreinforced slopes have been 
modified to include the stabilizing contribution of 
geosynthetic reinforcement layers. These methods 
include circular slip (Kitch 1994), log-spiral (Leshchinsky 
and Boedeker 1989) and two-part wedge (Bathurst and 
Jones 2001) approaches. The margin of safety is 
computed as a single-valued critical factor of safety for the 

reinforced slope. However, due to uncertainty in the 
magnitude of soil properties (Phoon and Kulhawy 1999), a 
carefully designed reinforced slope that satisfies a target 
factor of safety will always have some probability of failure 
(Pf). Furthermore, it has been frequently demonstrated in 
the literature that two nominally identical unreinforced soil 
structures can have the same factor of safety based on 
conventional deterministic factor of safety analysis 
methods but have very different probabilities of failure. 
The same must be true for reinforced slopes. Hence, it 
can be argued that a proper appreciation of the margin of 



2 
 
 

 

safety for reinforced slopes is best understood in 
probabilistic terms.   

Although many studies on probabilistic slope stability 
analysis of unreinforced slopes can be found in the 
literature, similar investigations for reinforced slope cases 
are limited. Kitch (1994) carried out probabilistic analyses 
of two reinforced slope examples with reinforcement 
layouts initially selected using design charts based on 
deterministic limit equilibrium methods. Low and Tang 
(1997a) proposed a limit equilibrium stability model for 
reinforced embankments on soft ground and a practical 
reliability evaluation procedure. However, the LEM 
method used in both studies has the major disadvantage 
that the type of critical failure surface must be assumed a 
priori (e.g. circular, non-circular or bi-linear). Recently, a 
probabilistic analysis technique called the Random Finite 
Element method (RFEM) has been developed by Griffiths 
and Fenton (2004) to conduct probabilistic stability 
analysis of slopes. This approach incorporates random 
field theory and the shear strength reduction (SSR) 
method within a Monte Carlo (MC) simulation framework. 
The combined SSR method and RFEM approach makes 
no assumption regarding the critical failure surface 
geometry and internal forces between slices which is the 
case for conventional method of slices approaches. At the 
time of this study, the RFEM approach has not been used 
to model reinforced slopes and embankments. 

In the current study an existing RFEM program 
(Griffiths and Fenton 2004) was expanded to allow for 
probabilistic analysis of reinforced slope cases. Although 
the expanded code is capable of modeling random fields, 
in this investigation it was restricted to single random 
variable cases as a first step to validate the code. This 
means that all soil elements in the slope model are 
assigned the same soil property values in each Monte 
Carlo simulation run. To prevent confusion, the source 
code is referred to as a FEM code, hereafter. 

The original unmodified FEM code was first validated 
by investigating unreinforced slope cases. Analysis results 
using the modified FEM source code were then compared 
to results of FEM analysis of reinforced slopes using a 
commercial software package. Results are shown to be in 
good agreement. Finally, the utility of the expanded code 
is demonstrated using a number of reinforced slope 
examples. 

In this paper, probabilistic slope stability analyses 
using LEM methods together with probability theory are 
referred to as probabilistic limit equilibrium methods 
(PLEM). The FEM approach combined with MC simulation 
is referred to as PSSR, and incorporates the shear 
strength reduction method (SSR). 
 
 
2 VERIFICATION OF THE FEM SOURCE CODE 
 
2.1 Probabilistic slope stability study of unreinforced 

cohesive slopes 
  
2.1.1 Analysis using PLEM with closed-form solution 
 
Results using the PSSR method are first compared to 
PLEM results where the latter are taken from probabilistic 

stability design charts for simple unreinforced purely 
cohesive soil slopes developed by Javankhoshdel and 
Bathurst (2014). They combined probability theory and 
Taylor’s slope stability equation (Eq. 1) for cohesive soils 
(Taylor 1937). Taylor’s slope stability equation is 
expressed as: 
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Here Fs is the mean factor of safety computed using mean 

values of Su and γ (su and ), slope height H and slope 
stability number Ns . Fs was used in Eq. 2 together with 
coefficients of variation of undrained shear strength 
(COVsu) and total unit weight (COVγ) to calculate 

probability of failure, Pf.  
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Fig. 1 Probability of failure (Pf) versus (deterministic) 
mean factor of safety (Fs) for cohesive soil slopes with 
lognormal distribution of undrained shear strength (Su) 
and unit weight (γ) computed using PLEM with closed-



3 
 
 

 

form solution (dash lines) and PSSR (symbols) 
approaches 

Fig. 1a and Fig. 1b present two different series of 

cases. The first one considers the total unit weight  to be 
deterministic (no variability) and hence COVγ is equal to 

zero. For the second series of cases, both undrained 
shear strength Su and total unit weight γ are considered 

as uncorrelated random variables. Therefore the 
coefficient of variation of factor of safety is due to the 
variability in random variables Su and γ, and is calculated 

as:  
 

     2

γ

2

suFS COVCOVCOV   [3] 

 
The dash curves in Fig. 1a and Fig. 1b are the closed-

form solutions using Eq. 2. The data show that as the 
mean factor of safety decreases for any constant level of 
variability in random variables, the probability of failure 
also decreases, which is expected. 
 
2.1.2 Analysis using PSSR 
 
Fig. 2 shows the simple slope geometry used in the 
simulations. In order to compare PSSR outcomes with 
PLEM results, two different groups of probabilistic 
analysis were conducted. In the first group the undrained 
shear strength Su was the only random variable, while in 
the second group both the undrained shear strength Su 
and the unit weight γ of the soil were treated as random 

variables. The mean value of the unit weight was 20 
kN/m

3
. All random variables are assumed to have 

lognormal distribution. For deterministic stability analysis, 

the choice of Young’s Modulus (E) and Poisson’s ratio () 
has little influence on stability analysis outcomes (Griffiths 

and Lane 1999), hence parameters E and  were taken 
as 100 MPa and 0.3, respectively. The mean value of Su 
was varied from 30 to 60 kPa with an increment of 5 kPa. 
For the first group of analyses the undrained shear 
strength Su was the only random variable and it was 
determined that a total number of 1000 Monte Carlo 
simulations was sufficient to give a consistent estimate of 
probability of failure. However, for the second group with 
two random variables, 2000 Monte Carlo simulations were 
needed to obtain a reliable result. A parametric study to 
investigate the influence of number of Monte Carlo 
simulations on probability of failure outcomes related to 
two random variables was also performed. Since 

cohesion (c) and friction angle () are the most important 
parameters in slope stability analysis, they were taken as 
the random variables in the parametric study. Fig. 3 
shows that for cases with two random variables, 2000 
Monte Carlo simulations will give similar estimates of 
probability of failure.  

The simulation results for the first and second groups 
are plotted as symbols in Fig. 1a and Fig. 1b, respectively. 
The PLEM results based on the closed-form solution and 
PSSR outcomes can be seen to agree very well. 
 
2.2 Probabilistic slope stability study of unreinforced 

cohesive-frictional (c-) soil slopes 
 

Javankhoshdel and Bathurst (2014) also developed 
stability design charts for simple unreinforced c-ϕ soil 
slopes using PLEM (LEM with MC simulation). In these 
charts both cohesion c and friction angle ϕ were 
considered as random variables having lognormal 
distributions. The SVSlope software package (Fredlund 
and Thode 2011) was used to carry out circular slip 
(simplified Bishop’s method) analyses together with the 
Floating Method option for probabilistic analyses. The 
solid lines in Fig. 4 show numerical results for μc 

/(μHtanμ) = 0.2 and μ = 30°. These curves are general 

and apply also to for different combinations of μc, μ  and 

H, as long as μc /(μHtanμ) = 0.2. In their analysis, 4500 
Monte Carlo simulations were used in each case. To 
check the PSSR approach for cohesive-frictional soil 
slopes, a series of analyses were carried out based on the 
slope with the geometry shown in Fig. 2. The slope 
gradient was varied from 0 to 1.5 to obtain different mean 
values of factor of safety. Apart from the slope angle, the 
slope model has the same geometry and boundary 
conditions as those shown in Fig. 2. Parameters used in 
the program are shown in Table 1. Again, based on the 
results in Fig. 3, a total of 2000 Monte Carlo simulations 
were used in PSSR analyses.  

Fig. 4 shows that both programs give very similar 
results for different combinations of COVc and COVϕ. 
 

 
Fig. 2 Test problem for cohesive soil slope 
 

 
Fig. 3 Number of Monte Carlo simulations versus 

probability of failure (Pf) for c-soil slope examples with 
two random variables  
 
 
3 VERIFICATION OF MODIFIED FEM CODE 
 
3.1 Methodology 
 
With the exception of some minor modifications, the FEM 
source code is Program 6.2 found in the book by Smith 
and Griffiths (1998) was used in the current study. The 
bulk of the code is for SSR analysis. The original program 
is for two-dimensional slope stability analysis of 
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unreinforced slopes with elastic-perfectly plastic soils 
governed by Mohr-Coulomb failure criterion. Eight-node 
quadrilateral elements are used. The bottom of the slope 
foundation is fixed in both horizontal and vertical 
directions. The vertical boundaries on both sides are fixed 
in the horizontal direction. The gravity “turn-on method” is 
used in the analysis. For more details, see Griffiths and 
Lane (1999).  
 
Table1. Input parameters for PSSR analyses with c - ϕ             

soil slopes 

H:V 0 - 1.5 
H 10 m 
Cohesion c 23 kPa 
Friction angle ϕ 30° 
Unit weight γ 20 kN/m

3
 

Young’s modulus E 100 MPa 
Poisson’s ratio 0.3 

 

 
Fig. 4 Probability of failure (Pf) versus (deterministic) 
mean value of factor of safety (Fs) with a range of COV for 
strength parameter values (comparison between PLEM 
and PSSR approaches) 
 

In this study, three-node beam elements were added 
to the program to model reinforcement layers. The beam 
elements have no bending stiffness, Therefore, the 
simplified beam element, which is also called a bar/rod 
element, has only one degree of freedom. There is no 
interface between the reinforcement and soil (i.e. the soil 
and reinforcement elements are perfectly bonded). In the 
SSR analysis, the axial stiffness of the reinforcement is 
constant and only the soil strength parameters are 
reduced. 

The modified source code was first checked by 
comparing the computed reinforcement strains and 
displacements with results from the software package 
Sigma/W (Geo-Slope Ltd. 2014) for the same stable slope 
in Fig 5.  

The first step was to select a reinforced slope case. 
The second step was to select convergence tolerance 
limits for both programs so that both will give similar and 
consistent numerical outcomes. This preliminary exercise 
is necessary because the two FEM programs use different 
convergence criteria to identify numerical equilibrium. 
 

3.2 Reinforced slope model for code verification 
 
In this investigation a slope with a slope face angle of 45°, 
slope height of 5 m and a horizontal backfill surface and 
fore slope was assumed. The unfactored friction angle of 
the soil was assumed as 30°, and the unit weight of the 
soil as 18 kN/m

3
. To avoid numerical instability during 

finite element analyses, the soil cohesion was assigned a 
value of 1 kPa. The candidate reinforcement was taken as 
a uniaxial geogrid with properties reported by Walters et 
al. (2002). The axial stiffness of the reinforcement is 600 
kN/m and the tensile strength at rupture is 72 kN/m. Using 
the prescribed slope geometry, soil properties, and 
reinforcement properties described above, the number of 
reinforcement layers and spacing between reinforcement 
layers was determined using the LEM-based design 
charts by Bathurst and Jones (2001). Assuming a nominal 
factor of safety equal to 1.3, the design friction angle of 
soil was 23.9° and the minimum ratio of reinforcement 
length to slope height was found to be L/H = 0.81, which 
leads to a minimum reinforcement length of 4.05 m. For 
convenience, the length of the reinforcement was taken 
as 5 m. It was determined that a minimum of 5 layers of 
reinforcement at 1 m vertical spacing was required to 
achieve a factor of safety of 1.3 using the charts by 
Bathurst and Jones (2001). The geometry of the 
reinforced slope is shown in Fig. 5. The matching FEM 
mesh is shown in Fig. 6. 
 

 
Fig. 5 Geometry of reinforced slope model 
 

 
Fig. 6 FEM mesh for reinforced slope model 
 
3.3 Convergence criterion limit for modified FEM code 
 
A convergence criterion is implemented in the original and 
modified FEM code developed by the writers to determine 
when the model is in equilibrium (converged). A solution is 
deemed to have converged if the relative change between 
the largest nodal displacements of two successive 
iterations is smaller than a specified tolerance. Fig. 7 
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shows that as the convergence tolerance decreases, 
computed reinforcement strains are more consistent. The 
difference between results based on the convergence 
tolerance of 10

-6
 and 10

-5
 (relative displacement) is not 

visually distinguishable. There is a negligible difference 
between the results for convergence tolerance of 10

-4
 and 

10
-5

. Although the result of convergence tolerance of 10
-5

 
is slightly more accurate, a higher computation cost due to 
more iteration steps is required for negligible benefit. 
Therefore, a convergence tolerance of 10

-4
 was used in all 

simulation runs using the modified FEM code.  
  

Fig. 7 Influence of convergence tolerance on distribution 
of reinforcement strain (layer 3) 
 
3.4 Convergence criterion limit for Sigma/W FEM 

program 
 
The reinforced slope shown in Fig. 5 was also analyzed 
using Sigma/W. To be consistent with the former program 
procedure, the gravity turn-on method was used. During 
calculations, Sigma/W computes the difference between 
the displacements at each node from two successive 
iterations. If the difference is within a specified tolerance 
(minimum displacement), the solution is deemed to have 
converged. For example, consider two successive 
displacements such as 1.23×10

-6 
m and 1.23×10

-7 
m. 

These two numbers have the same number of significant 
digits and the difference is 1.11×10

-6 
m. If a minimum 

difference of 1.0×10
-5 

m is specified, then the solution is 
deemed to have converged. Sigma/W provides the user 
with an option to select the significant digit number from 1 
to 8 to obtain different accuracy. Fig. 8 shows that, the 
combination of significant digit number and minimum 
difference has a large influence on the accuracy of the 
results. For a smaller minimum difference value and a 
larger significant digit number, a higher accuracy can be 
obtained. In this particular problem, five significant digits 
were used and the minimum displacement difference 
specified was 10

-6
 m. 

 
3.5 Comparison of results using modified FEM and 

Sigma/W 
 

Fig. 9 shows that the strains, horizontal and vertical 
displacements of reinforcement computed using both 
programs agree well. 

 
Fig. 8 Influence of significant digit number and minimum 
displacement difference on normalized maximum 
reinforcement strain (layer 3) 
 

 
Fig.9 Comparison of analysis results using modified FEM 
code and Sigma/W program (layer 3). (a) Reinforcement 
strain. (b) Reinforcement horizontal displacement Dh. (c) 
Reinforcement vertical displacement Dv. 
 
3.6 Determination of factor of safety 
 
The iteration ceiling adopted in the modified FEM program 
to satisfy the convergence criterion limit was 4000 for 
cases when the program was searching for the reduction 
in soil strength (reduction factor) required to bring the 
model (slope) to failure. If the algorithm is unable to 
converge within 4000 iterations, a rapid increase in nodal 
displacements occurs indicating that the slope has failed. 
The corresponding shear strength reduction factor used 
by the program at failure is the factor of safety of the 
reinforced slope. For the simple reinforced soil slope used 
here, the modified FEM program gave a factor of safety of 
1.5, which is very close to the result calculated by LEM (Fs 
= 1.506, Bishop’s method). It can be seen that the FEM 
result is higher than the nominal factor of safety (Fs = 1.3) 
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adopted in the original design. This can be explained by 
noting that the design charts were developed by first 
searching for the critical two-part wedge failure surface of 
the unreinforced slope. Hence, the critical failure 
mechanisms are constrained to two-part wedge 
geometries and are decoupled from the reinforcement 
tensile loads that are added afterwards and computed as 
the sum of the forces required to keep the slope in 
horizontal equilibrium. The design charts ensure that all 
reinforcement layers extend beyond the critical 
unreinforced failure mechanism. Hence, the design charts 
consider only internal stability of the reinforced soil zone. 
For these reasons the design charts give a conservative 
(safe) estimate of factor of safety compared to LEM and 
FEM predictions.   
 
3.7 Failure features of reinforced and unreinforced   

slopes 
 
Fig. 10 shows that for the unreinforced slope the plastic 
deformation (yield) zone is small. Fig. 10a shows that the 
failure surface is shallow and passes above the toe. In 
Fig. 10b, a deformation (shear) band is visually 
detectable. Fig. 11 shows that the addition of 
reinforcement layers increases the size of the plastic 
deformation zone. As a result, the stability of the slope is 
increased. 
 

       
Fig. 10 Failure features of unreinforced slope with Fs = 
0.79. (a) Plastic displacement vectors. (b) Deformed 
mesh. (c = 1 kPa, ϕ = 30°, γ = 18 kN/m

3
) 

 

        
Fig. 11 Failure features of reinforced slope with Fs = 1.5. 
(a) Plastic displacement vectors. (b) Deformed mesh. (c = 
1 kPa, ϕ = 30°, γ = 18 kN/m

3
, J = 600 kN/m) 

 
4 PROBABILISTIC STABILITY STUDY OF 

REINFORCED SLOPES USING MODIFIED FEM 
CODE 

 
The reinforced slope model shown in Fig.5 was used for 
probabilistic study in this section. During the calculations, 
only soil friction angle was varied while reinforcement 
properties and slope geometry were held constant. Fig. 12 
shows results of simulations using the modified FEM code 
with MC simulation to investigate the influence of mean 
soil friction angle and random variability of soil friction 
angle on probability of failure. The plots show that for 
reinforced and unreinforced slopes with the same nominal 
soil properties and geometry, the reinforced slope has a 
higher factor of safety and lower probability of failure.  

For example, for the case of an unreinforced slope 
with a friction angle of 35 degrees, the factor of safety is 
0.92, which means the slope has failed (Fig. 12a). On the 
other hand, a reinforced slope with the same soil 
properties has a factor of safety as high as 1.79.  

Results of probabilistic analyses are shown in Fig 12b. 
For an unreinforced slope with a friction angle of 35 
degrees and a coefficient of variation of 0.2, the 
probability of failure is 69%. If the slope is constructed 
with 5 layers of reinforcement, the probability of failure 
decreases to 0.6% in this example, which is a very large 
improvement. For the same unreinforced slope but with a 
coefficient of variation of 0.5, the probability of failure is 
66%. If the slope is constructed with the same number of 
reinforcement layers as before, the probability of failure 
will decrease to 19%. Again, the reinforcement reduces 
the probability of failure by a large amount. However, the 
effect of reinforcement on reducing Pf values is also 
influenced by amount of variability in the estimate of soil 
friction angle. For slopes with a low coefficient of variation 
of ϕ (COVϕ = 0.2), the difference between probability of 

failure values of reinforced and unreinforced slopes is 
relatively large, especially for friction angles in the range 
of 25 to 40 degrees. However, for slopes with COVϕ = 0.5, 

the change in Pf is relatively small. This is consistent with 
the expectation that reinforcement is less effective in 
stabilizing a slope if the slope has high variability in soil 
properties.  
 

 
Fig. 12 (a) Factor of safety (Fs) and (b) probability of 
failure (Pf) versus nominal (mean) friction angle for 
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unreinforced and reinforced soil slopes and different COV 
for soil friction angle  
 

A series of probability of failure versus factor of safety 

curves are plotted in Fig.13 for the case of 45 slopes and 
(mean) friction angle from 20 to 60 degrees. The larger 
value was selected to detect trends in data outcomes. The 
plot shows that for slopes with COVϕ = 0.2 and factor of 

safety equal to 1.79, the probability of failure of the 
unreinforced slopes is 2.9% while the Pf value for  the 
reinforced slope cases is 0.6%. For the slopes with COVϕ 

= 0.5 and the same factor of safety, the probability of 
failure of the unreinforced slopes is as high as 32%; 
however, for the reinforced slopes the Pf value decreases 
to 19%. In both cases, the reinforcement plays an 
important role in reducing the potential for failure of the 
slope. 

 
 

  

 
Fig. 13 Probability of failure (Pf) versus factor of safety 
(Fs) for unreinforced and reinforced slopes 
 

 
5 CONCLUSION 
 
A numerical tool for probabilistic stability analysis of 
geosynthetic reinforced slopes has been developed based 
on additions to the FEM source code for unreinforced 
slopes developed by Griffiths and Fenton (2004). The 
modified FEM code has been validated against a 
commercial code and then used for probabilistic stability 
analysis of reinforced slopes. This was done as a first 
step to validate the new code which has a module to 
investigate spatial variability and is the subject of ongoing 
research by the writers.  

Results presented in the current study show that the 
reinforcement can increase the factor of safety and 
decrease the probability of failure of a slope. For a 
cohesionless soil slope with low variability of soil friction 
angle, the reinforcement can reduce the probability of 
failure to effectively zero. For a slope with a high 
variability of soil friction angle, the reinforcement can still 
reduce the probability of failure by a large amount.  

The advantage of the new numerical tool is that it 
offers a powerful tool to relate conventional notions of 
factor of safety for reinforced soil slopes to margins of 
safety described by more meaningful probability of failure. 
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