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ABSTRACT 
A significant underground mine design challenge is predicting the stability of a previously placed cemented backfill when 
it is to be undercut in a subsequent stage of mining. Mitchell (1991) proposed several limit equilibrium analyses for this 
design situation based on different assumed modes of failure, but little has been done since then to more carefully 
consider the most appropriate means analysis approach. This paper considers a tentative framework for an alternate 
limit equilibrium solution, based on the assumption that the cemented backfill behaves as rigid struts to support the 
overlying fill. The advantage of this analysis approach is that it provides a unifying model for the previous disparate 
analysis methods. Remaining challenges to using this analysis for practical design will be addressed.  
 
RÉSUMÉ 
Un défi de conception important de mine souterraine est de prédire la stabilité d’un remblai cimenté placé dans le passé, 
quand il doit être rongé lors d’une étape ultérieur de l’exploitation minière. Mitchell (1991) a proposé plusieurs analyses 
d’équilibre limite, pour cette situation de conception, basées sur différents modes hypothétiques de rupture, mais il y a 
eu peu d’avancée depuis pour examiner plus attentivement l’approche d’analyse la plus appropriée. Cet article considère 
un cadre provisoire pour une solution d’équilibre limite basée sur l’hypothèse que le remblai cimenté se comporte 
comme des supports rigides pour soutenir la couche de remblai qui le recouvre. L’avantage de cette approche d’analyse 
est qu’elle fournit un modèle unificateur pour les méthodes d’analyse disparates précédentes. Les défis restants de 
l’utilisation de cette analyse pour la conception seront abordés dans cet article. 
 
 
 
1 INTRODUCTION 
 
In underground mining it is often the case that a 
previously placed cemented backfill needs to be undercut 
in a subsequent mining stage. The previously placed 
cemented backfill, sometimes called a sill mat, is typically 
placed with a higher binder content and possibly some 
reinforcement, however their design was largely empirical 
until Mitchell and Roettger (1989) and Mitchell (1991) 
used a series of centrifugal physical model results to 
suggest some limit equilibrium solutions to assess 
different failure modes. 

The authors are aware of major mining companies that 
continue to use Mitchell’s 1991 solutions, and these same 
solutions have also been considered by others when 
designing rehabilitation strategies for old mine workings 
(Beauchamp et al.). Several authors refer to Mitchell’s 
1989 and/or 1991 works only to indicate it is a method 
available for one of the important underground mine 
design situations, without critical assessment. De Souza 
and Dirige (2001) have continued to use centrifuge 
modeling for underground backfilling problems but their 
results do not appear to have been applied widely. 
Importantly, no mining companies (or their consultants) 
appear to have published case studies comparing as-
designed sill pillars with their actual field performance. To 
address this situation, Pakalnis and co-workers at the 
University of British Columbia, with their industry partners 
undertook an extensive field investigation of sill pillar 
performance at operating mines, using Mitchell’s solutions 
for back-analysis and comparison with field observations 
(Pakalnis et al., 2005). Comparisons were also made 

between Mitchell’s indicated failure modes and results of 
numerical analyses using FLAC2D (Doerner, 2005) 
although alternative failure modes were not assessed.  

The scope of this paper is limited to (sub-)vertical 
stopes with unreinforced sill mats, which involves only the 
first three of Mitchell’s limit equilibrium solutions (the 
fourth being relevant to backfills in shallow-dipping 
stopes). The failure modes considered by these limit 
equilibrium solutions involve i) failure of the exposed 
undercut fill due to tensile detachment; ii) beam bending 
failure; and iii) side shear block failure along the backfill-
host rock interface and subsequent rigid block sliding. The 
basis for Mitchell’s three limit equilibrium solutions is 
reviewed and some limitations are discussed. An 
alternative failure mode is then proposed which is 
motivated by the “strut and tie” model used as the basis 
for one of the reinforced concrete beam design methods. 
It has the advantage of unifying the three previous failure 
modes which were treated as separate mechanisms by 
Mitchell. Comparisons will be made with numerical 
models, and a path forward towards a rational design 
process is suggested.  

 
 
2 REVIEW OF MITCHELL’S (1991) SOLUTIONS 
 
Mitchell (1991) originally considered sill matt design in a 
very general way, including vertical to shallow-dipping 
backfilled stopes, and both reinforced and unreinforced sill 
mats. Here, the scope will be restricted to (sub-vertical) 
unreinforced sill mats.  



The sill mat is generally loaded on its top surface by 
the overlying fill, which may or may not be cemented. 
Mitchell proposed assessing the surface load due to the 
overlying fill using the solution derived from an arching 
analysis,  

 

v =  L / (2 K tan) [1] 

 

Where v is the vertical stress,  is the backfilll unit weight, 
L is the horizontal length of the stope (hangingwall to 
footwall), K is the coefficient of lateral earth pressure, and 

 is the angle of internal friction. This assumes the backfill 
does not develop pore water pressures and a total stress 
analysis is carried out. Mitchell suggests that it is “often 
assumed” K = 1; however lower values of K will increase 

the predicted v. Alternatively, in some cases the stress 

path during filling does not correspond to the assumptions 
behind traditional arching analyses and the resulting 
imposed vertical stress can be lower than that suggested 
by Eq. [1] (Thompson et al., 2012). It must therefore be 

recognized that reliable prediction of v is non-trivial. 

 
2.1 Tensile Detachment 
 
When the sill mat is undercut, the newly exposed 
underside becomes traction free and this will result in 
backfill stress relaxation in proximity. In the field this 
frequently results in observed “caving” of the backfill up to 
a point where the material tensile strength is equal to the 
resulting stresses. Mitchell suggested modeling the caved 
region as semi-circular; however, it should be recognized 
that this is a more extreme geometry than observed in the 
field.  

The limit equilibrium solution is established by 
consider the driving force (downward) to be the self-
weight of the failed caved region, and the resisting force 
(upward) to be the tensile strength integrated along the 
horizontal projected area of the failed surface. Thus the 

resisting force Fr will always be equal to t L where t is 

the tensile strength. The larger the assumed area of the 
failed caved region, the more critical the tensile 
detachment mode of failure will become, and thus 
Mitchell’s assumed semi-circular geometry probably over-
predicts the required tensile strength in most cases. For 
the assumed semi-circular geometry the driving force Fd 

is equal to ½  (½L)
2
  = ( L

2
 )/8. Equating driving and 

resisting forces and rearranging produces Mitchell’s 
expression (equation 3 in the original paper) 

 

L  > 8 t /  [2] 

 
Practicing engineers prefer to use the Unconfined 

Compressive Strength (UCS) as a reference strength, as 
well as an appropriate Strength Factor SF. Furthermore, it 

is common to assume t = UCS/10 for geologic materials. 

Therefore, further rearrangement of the above equations 
results in a more convenient expression for design, 

 

UCS = SF 4 L  [3] 

  

When using these equations it must be borne in mind 
that a semicircular geometry is assumed, which then 
imposes the geometric constraint: 

 
d > ½ L [4] 
 

where d is the sill mat depth. 

 
2.2 Flexural Failure 
 
For a fixed-ended beam under uniformly distributed load 
w, the maximum bending moment occurs at the ends and 
is equal to (according to Euler-Bernoulli beam theory) 
w L

2
 / 12, and the maximum fiber stress is w L

2
 / 12Z, 

where for a solid rectangular section Z = b d
2
 / 6. For a 

two-dimensional analysis the depth into the plane can be 
taken as b = 1 and therefore the maximum fiber stress is 
½ w (L/d)

2
. Given that cemented geomaterials are weaker 

in tension than in compression it is necessary that the 

tensile strength t be at least equal to this maximum fiber 

stress and therefore t ≥ ½ w (L/d)
2
. If a compressive 

confining stress c acts across the length of the beam 

then this reduces the maximum fiber stress so that it can 

be written t ≥ ½ w (L/d)
2
 - c. Therefore, for a desired 

Strength Factor SF, 
 

t = SF ( ½ w (L/d)
2
 - c ) [5] 

 
Setting SF = 1, this can be rearranged to obtain Mitchell’s 

expression (L/d)
2
 > 2(t + c)/w (equation 2 in the original 

paper). Here the distributed load w includes both applied 

loads v as well as the self-weight effect  d. It should be 

noted that this is based on Euler-Bernoulli beam theory, 
i.e. that “plane sections remain plane” and this condition is 
increasingly inappropriate as the ratio L/d decreases (as 
the beam becomes thicker), which is probably the case for 

most sill mats. As well, predicting reasonable values of c 

is also a non-trivial task, similar to v.  

Again assuming t = UCS/10, the above equations can 

be rearranged to a form more suited to practical 
application, 

 

UCS = SF ( 5 w (L/d)
2
 - c )  [6] 

 

It is conservative to assume that c = 0 in which case 
UCS = SF 5 w (L/d)

2
. Again it must be borne in mind that 

the usual Euler-Bernoulli beam theory assumptions are 
not valid for most sill mats, and that the assessments of w 

(v) and c are non-trivial. Most importantly, the equations 

are predicated on preventing the maximum fiber stress at 
the bottom of the sill mat from exceeding the backfill 
tensile strength; however, it is well known that for a fixed-
ended beam this stress level will be well below the level 
eventually required to create plastic hinges in the beam 
and bring it to its ultimate condition. Therefore, even if all 
other assumptions are satisfied for the design conditions 
considered, the values given by equation [6] will be 
conservative.  
 
 



2.3 Side Shear Block Failure 
 
Similar to caving, this mode is assumed to be only 
potentially significant for thick sub-vertical sill mats. 

Taking the dip angle as β, the driving force Fd sin along 

the sidewall direction is due to the vertical stress acting on 

the top surface, v L, as well as the sill self-weight, L d , 

such that Fd = L (v + d ). The shear force mobilized on 

the backfill-wall contacts is f and acts over length d/sin 

so that Fr = f d / sin. In the direction of the sidewall the 

equilibrium equation can be written Fd sin = 2 Fr, and 

incorporating the engineering strength factor and making 
the substitutions for Fd and Fr this becomes 
 

SF L (v + d ) sin = 2 f d / sin  [7] 

 
Setting SF =1, this can be rearranged to obtain Mitchell’s 

expression (v + d ) > 2 (f / sin
2
) (d/L) (equation 4 in the 

original paper). Mitchell and Wong (1982) and Mitchell et 
al. (1982) show that for small strains the shear strength at 

initial yield is f = ½ UCS. Substituting this into equation 

[7] and rearranging, it can conservatively be written  
 

UCS = SF L (v / d + ) sin
2
 [8] 

 
It should be noted that equations [3], [6] and [8] are 
extensions of Mitchell’s original equations and have 
incorporated some commonly assumed relationships 
between different strength parameters for geomaterials, 
however the advantage of using the equations in these 
forms is that it allows a common basis for comparing 
required backfill UCS required to resist tensile detachment 
(caving), flexure, a side shear block failure modes, 
respectively, and to thereby determine which mode is 
critical in design. All of the previously noted limitations 
should be borne in mind when using these equations, and 
it must be remembered that the failure modes were 
derived from independently assessed failure mechanisms. 
In the following section a unifying model is presented that 
attempts to integrate the analysis of these modes.  

 
 
3 PROPOSED ALTERNATE MODEL 
 

In the design of reinforced concrete beams one 
method of analysis that can be used is the “strut-and-tie” 
model in which the steel reinforcement simulates ties that 
can carry tensile stresses and the (plain) concrete 
simulates struts that carry compressive stresses. For an 
unreinforced sill mat this can be simplified to simply a strut 
model. The basis for this model in assessing sill mat 
stability is shown in Figure 1. In general, it is assumed 
that the sill mat can be analysed as consisting of two 
internal symmetric trapezoidal sections that react against 
the hostrock at either side (the “abutments”), and against 
each other in the middle. The generation of horizontal 
reaction forces at the abutments allows for a 
corresponding vertical shear reaction which resists the 
vertical stress imposed by overlying backfill. No shear 
exists on the mid-plane (the contact between the two 
struts) due to the symmetry at this location. The offset 

between the horizontal reaction forces imposes a moment 
which resists the moment generated by the overlying fill.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Assumed model for sill mat stability assessment 
 

The force components can be assessed by isolating 
one of the struts and examining its free body diagram. For 

vertical equilibrium Fv = ½ L (v + d ) and for moment 

equilibrium (e.g., taking moments about any point along 

the sidewall) Fh = ¼ L
2
 (v + d ) / x. To determine x, 

assumptions could be made about the thickness of the 
struts and the shape of the stress distributions on each 
face; instead, numerical analysis will be used in the next 
section to guide the most appropriate assumptions. As will 
be discussed, for real design situations it is likely 
necessary to carry out numerical analysis to assess the 
geometric limits of the detailed design under 
consideration; once the appropriate geometry/geometries 
have been defined, limit equilibrium equations can 
subsequently be carried out for routine designs to 
determine the appropriate backfill UCS requirements.  

The potential for tensile detachment is significantly 
less than Mitchell’s assumed semi-circular geometry. In 
real design situations more detailed measures, likely 
incorporating reinforcement, would have to be used if the 
underlying excavation was re-entry (i.e., if personnel were 
to go back in). Thus the assumed unreinforced mat is 
appropriate for non-re-entry situations. The tensile 
detachment calculation can be undertaken once the strut 
geometry is determined from numerical analysis, but in 
practice it is normally assumed that minor caving will 
occur and care must be taken to avoid re-excavating this 
spoil material in the subsequent stage of stope extraction.  

The flexural failure mechanism is drastically different 
than Mitchell’s assumed critical mode. Here, once the left 
and right stress distributions corresponding to Fh are 
determined, the maximum compressive stress can be 
compared to the UCS to ensure backfill crushing does not 
occur.  

The side shear block failure mechanism will be 
identical to the Mitchell analysis. It should be noted that 
for large open stopes the production blasting typically 
results in very rough wall surfaces and so shear through 
the weaker backfill material should be expected in these 

Fh 

Fh 

Fv x 



situations. As a result, the full backfill internal shear 
strength may be used.  

 
 

4 EXAMPLE NUMERICAL ANALYSIS 
 
The following analysis shows how numerical results can 
be used to guide the detailed development of the 
generalized model presented in the previous section. 
Once this has been done, simplified limiting equilibrium 
solutions can be developed so that practicing engineers 
can quickly carry out routine design calculations, without 
further aid of numerical analysis.  

The example considers a sill mat L = 10 m wide and 
d = 6 m deep. The host rock is assumed elastic with 
Young’s Modulus 70 GPa. The backfill in the sill mat is 
considered elastic-perfectly plastic with Young’s Modulus 

5 GPa, unit weight  = 20 kN/m
3
, and Mohr-Coulomb 

strength parameters cohesion c = ¼ UCS, internal friction 

angle  = 37°, and tensile strength t = UCS/10. (The 

parameterized cohesion is appropriate to the chosen .) 

The tensile strength is reduced to zero once exceeded, 
and no dilation is assumed during plastic shearing. The 
contacts have a similar strength model as the backfill.  

Contact stiffness must be selected carefully for such 
analyses. Here, the contact is not comprised of two 
distinct rock surfaces filled with gouge of nominal 
thickness and known mechanical properties. Instead, it is 
assumed that the contact represents the effects of non-
uniform filling between the backfill and host rock and that 
this would only occur on the mm-scale. Thus, the 
analyses are checked for contact displacements and the 
contact stiffness adjusted so that the predicted 
displacements remain in the mm-range.  

The geometry of the initial model is shown in Figure 2. 

For an assumed UCS = 5 MPa and applied v = 100 kPa 

the response is essentially elastic. Figure 3 shows the 
stress trajectories (with long axis oriented in the direction 
of major compressive stress) and indicates that significant 
arching is occurring between the two abutments. 
However, the effect of the stress reduction due to 
undercutting is also evident with only the top half of the 
mat retaining a minimum principle stress that is still 
compressive.  

 

 
 

Figure 2. Geometry of initial model.  
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Figure 3. Stress trajectories and minimum principle 
stresses at 100 kPa load level 
 

Increasing v beyond this 100 kPa level results in the 

onset of convergence issues which arise from the onset of 
a potential caving mechanism. As previously indicated, for 
non-re-entry stoping this failure mechanism can be 
handled and so this does not really represent the critical 
design.  

To better simulate the subsequent strut-type behaviour 
of the sill mat an alternate model, shown below, is 
generated that is motivated by the mechanism shown in 
Figure 1 and stress results shown in Figure 3. In this 

figure the vertical applied stress v has been increased to 

250 kPa.  
 

 
 
Figure 4. Geometry of modified strut model 
 

At this load level the maximum compressive stress at 
the top mid-span of the matt is 880 kPa, still well below 
the 5 MPa modeled UCS, and Figure 5 shows good 
evidence of arching action through the modeled struts. In 
fact, the most critical area for compressive strength is at 
about mid-height of the abutment (Figure 6) where the 

modeled SF is still about 2.0 for the assumed 250 kPa v. 
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Figure 5. Stress trajectories and maximum principle 
stresses at 250 kPa load level 
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Figure 6. Strength Factors and deformed shape 
 

To better understand the stress distributions acting on 
the contact surfaces the following figures are considered. 
Figure 7 is the centerline contact. The shear stresses (not 
shown) are near zero as expected due to the symmetry 
consideration. The normal stress distribution is linear with 
tensile stress (still less than the modeled tensile strength) 
at the bottom and maximum compressive stress at the 
top.  
 

 
 
Figure 7. Linear normal stress distribution occurring at the 
mid-span vertical joint in the modeled sill mat 
 

At the vertical abutment contact it appears that there 
has been some detachment or stress relaxation in the 
upper portion, such that only the lower two-thirds of the sill 
mat effective take compression and contribute to the 
modeled strut behaviour. Within this compressive zone, 
however, the normal stress distribution is linear (Figure 8). 
Also within this compressive zone the shear stresses are 
essentially constant (not shown) with magnitude about 
400 kPa.  
 

 
 
Figure 8. Linear normal stress distribution occurring at the 
abutment vertical joint 
 

For horizontal equilibrium, the reaction at the abutment is 
roughly 300 kPa average normal stress acting over 4 m 
for a thrust of 1,200 kN (per m into plane of analysis); and 
the reaction at the mid-plane is roughly 400 kPa average 
normal stress acting over 4 m for a thrust of 1,200 kN, so 
horizontal equilibrium is satisfied. For vertical equilibrium, 
the reaction at the abutment is roughly 400 kPa constant 
shear stress acting over 4 m for a traction of 1,600 kN 
(per m into plane of analysis); the vertical force due to 
applied stress is 1,250 kN and the self-weight is 450 kN, 
so vertical equilibrium is satisfied (within the 
approximations used in these calculations). For moment 
equilibrium it is necessary to determine the locations of 
the horizontal thrusts and thus the distance between their 
lines of action (x in Figure 1). Both stress distributions are 
linear and therefore the resultants will act at the third-
height from their maximum values. The horizontal thrust at 
the mid-plane then acts at about 1 m from the top of the 
sill mat, while the horizontal thrust at the abutment acts 
about 4.67 m from the top, such that x = 3.67 m. 

Therefore the resisting moment is 1,200 kN  3.67 m = 
4,400 kNm. The driving moment (about the abutment) is 
3,125 kNm due to the applied vertical load, and 
1,000 kNm due to self-weight, so moment equilibrium is 
satisfied (within the approximations used in these 
calculations). These results are summarized in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Summary of results approximated from the 
numerical analysis 
 
Finally, as mentioned in the previous section, once the 
appropriate geometry has been identified it is possible to 
assess resistance needed to prevent the tensile 
detachment (caving) mechanism identified by Mitchell. 
Here, the driving force Fd would be calculated as the half-

length  modeled height of cave  unit weight (per unit 

width) or 5 m  3 m  20 kN/m
3
 = 300 kN/m. The required 

material strength would be UCS = 10 Fd / L = 300 kPa. 
This compares to 800 kPa using Equation [8] and a 
SF = 1. Thus the predicted stability against caving using 
the strut model, as well as the caving geometry, is more 
consistent with field observations. 
 
 

Fh = 1,200 kN 

Fh = 1,200 kN 

Fv = 1,600 kN 

W = 450 kN 

Fv = 1,250 kN 

max = 800 kPa 

max = 600 kPa 



5 CONCLUSIONS AND FUTURE WORK 
 
This paper has presented only a single analysis in support 
of the proposed concept to illustrate the general model 
being employed and to highlight the approach towards 
developing more practical preliminary design tools for sill 
mats. Within the context of this preliminary investigation, 
the numerical analysis results support the notion that the 
strut model is a useful analogue for simulating the effect 
of an unreinforced sill mat that must support overlying 
backfill in a (sub-)vertical stope. It has the advantage that 
the strut analogue can be used create numerical models 
that more realistically simulate observed field behaviour of 
unreinforced sill mats, without running into spurious 
convergence problems caused by numerical issues in 
areas of the model that are not important to design 
(notably, in stress relaxation zones).  

A great deal more work is required to determine how 
to better identify optimal strut geometry and thus generate 
the stress distributions and force resultants that can be 
used for limit equilibrium equations in the simplified strut 
design. However, once this is done, it has the potential to 
provide designers with practical and easy calculations to 
assess preliminary designs of unreinforced sill mats that 
are undercut by non-re-entry stopes. 
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