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ABSTRACT 
A new plasticity model is proposed based on implementing a critical state based bounding surface model in 
multilaminate framework. The original bounding surface model is defined by the following four surfaces: (i) failure surface 
(ii) bounding surface; (iii) loading surface and (iv) plastic dilatancy surface. These surfaces are defined in multilaminate 
framework to introduce a new constitutive model. In this framework, the failure, bounding, loading and plasticity dilatancy 
surfaces are formulated on 2 x 13 local planes with varying orientations over a virtual unit sphere around a stress point. 
A weight factor is assigned to each plane with respect to the volume of the unit sphere. The overall response of the 
material when subjected to a load will then be integrated by summation of the contributions of all planes. The model 
parameters are calibrated by modeling nine triaxial tests under different densities and confining stresses. Application of 
the new constitutive model is then studied by its implementation into a finite difference code and modeling a soil-pipe 
laboratory test. It is concluded that the new constitutive model could accurately predict the observed triaxial and 
laboratory tests. 
 
RÉSUMÉ 
Un nouveau modèle de plasticité est proposé sur la base de la mise en œuvre d'un modèle multistratifié de surface 
englobante d’états critiques. Le modèle de surface de délimitation d'origine est défini par les quatre surfaces suivantes: 
(i) surface de rupture (ii) surface de délimitation; (iii) surface de chargement et (iv) surface plastique de dilatance. Ces 
surfaces sont définies dans le cadre du comportement multistratifié, afin d'introduire un nouveau modèle de 
comportement. Dans ce cadre, les surfaces de rupture, d’états limites, de chargement et de dilatance plastique sont 
formulées sur 2 x 13 plans locaux avec des orientations variant sur une sphère unitaire virtuelle autour d'un point de 
contrainte. Un facteur de pondération est affecté à chaque plan par rapport au volume de la sphère unitaire. La réponse 
globale du matériau quand il est soumis à une charge est ensuite intégré par sommation des contributions de tous les 
plans. Les paramètres du modèle sont calibrés par la modélisation de neuf essais triaxiaux sous différentes densités et 
contraintes de confinement. L’application du nouveau modèle de comportement est ensuite étudiée par sa mise en 
œuvre dans un code en différences finies et par la modélisation d'un essai de laboratoire sol-canalisation. Il est conclu 
que le nouveau modèle de comportement pourrait prédire avec précision les essais triaxiaux et de laboratoire. 
 
 
 
 
1 INTRODUCTION 
 
A numerous number of constitutive models have been 
presented with different capabilities, mostly based on 
experimental observations of material behavior using 
elasticity and plasticity theories. Usefulness of these 
models will be based on various factors such as soil 
grading and texture, presence of water, loading condition, 
etc. To name a few, the following researchers have 
introduced classic constitutive models that have been 
widely used in geotechnical engineering: Drucker et al. 
(1957), Roscoe and Burland (1968), DiMaggio and 
Sandler (1971), Lade (1977), Prevost (1978),  Mroz et al. 
(1981), Ghaboussi and Momen (1982), Desai and 
Faruque (1984), Poorooshasb and Pietruszak (1985), 
Dafalias and Herrmann (1986).  

Taylor (1938) presented a framework referred to as 
multilaminate. Multilaminate framework is semi-
micromechanical tool based on formulating a number of 
planes with varying orientations over a virtual unit sphere 

around a stress point. A weight factor is assigned to each 
plane with respect to the volume of the unit sphere. The 
overall response of the material when subjected to a load 
will then be integrated by summation of the contributions 
of all planes. 

Multilaminate framework is a tool and cannot predict 
the behavior of material independently. A constitutive law 
can be defined in this framework to take advantage of its 
features. By using this framework the overall behavior is, 
obtained by accumulating responses of the defined 
planes. Mathematically, any constitutive law could be  
used in this framework. 

Batdrof and Budiansky (1949) presented a 
multilaminate plasticity theory for metals that considered 
development of plastic shear strain along the direction of 
the shear stress path component.  

Zienkiewicz and Pande (1977) used Batdrof and 
Budiansky’s constitutive model and expanded it to 
fractured rocks. A similar approach was also employed by 
Pande and Pietruszczak (1982) for prediction of 



liquefaction of layered sand called reflecting surface 
model. In the same framework, Bazant and Oh (1983) 
presented a new model referred to as micro-plane for 
analyzing cracking in concrete. Pande and Pietruszczak 
(2001) provided a multilaminate model to describe soil 
anisotropy. Schweiger et al. (2009) provided a 
multilaminate model capable of considering both induced 
and inherent anisotropy for soils. 

An existing bounding surface constitutive model, as 
proposed by Crouch et al. (1994) based on Dafalias and 
Herrmann (1986), is explained in the multilaminate 
framework to introduce a new constitutive model. In this 
article, a brief description of the new constitutive model is 
presented. Details of the new constructive model have 
been presented by Sadrnejad and Karimpour (2010). A 
series of available triaxial test results are used for 
showing the capability of the new model to predict the 
behavior of loose and dense sand specimens under a 
range of confining stresses. 

This constitutive model is then used in a finite 
difference code to model a laboratory test that includes a 
pipe buried in sand under cyclic loading. Two laboratory 
tests are modeled and numerical and experimental results 
are compared. 
 
2 UNIFIED BOUNDING SURFACE MODEL IN 

MULTILAMINATE FRAMEWORK 
 
Using a multilaminate model, one could define a 
numerical relation between the microscopic and 
macroscopic behaviours. An existing bounding surface 
constitutive model, as proposed by Crouch et al. (1994) 
and referred to as unified critical state bounding model 
has been defined in  the multilaminate framework.  

The original bounding surface constitutive model uses 
two different radial and deviatoric mapping rules to define 
the loading surface based on the failure surface. Also, an 
innovative approach, based on movement of the mapping 
center are used in this model to observe the rotation of 
the principal stress axes and account for imposed 
anisotropy effects. The intrinsic anisotropy and bedding 
effects can be considered when using the multilaminate 
model by defining different material parameters on 
different planes. 
 
2.1 Definition of Planes and Local Coordinates 
 
To satisfy conditions of the multilaminate framework from 
the engineering viewpoint and reduce high computational 
costs, a limited number of sampling planes are used. 
Considering a good distribution of plastic deformation and 
avoiding high computing time, the choice of 13 
independent planes as shown in Figure 1 is a fair number 
for solution of any three dimensional problem. 

The components of the unit normal vector of plane i  

(li, mi and ni) and plane’s weight coefficients (wi) for the 
numerical integration rule are presented in Table 1. The 
coefficients wi have been calculated based on Gauss 
Quadrature numerical integration rule. The presented wi 
are acceptable for a first order tensor and are corrected 
for a second order tensor like (e.g., stress or strain) by 
multiplying the ratio of area for each plane on the unit 
sphere. 

A coordinate system has been used for each plane 
such that one axis is perpendicular to the plane and two 
axes are on the plane. Plastic shear strains are 
considered on the planes. 

 
 

 
Table 1. Plane’s unit vector components and  weight coefficients for numerical integration. 
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Figure 1. Planes used in the presented multilaminate constitutive model. 

 
2.2 Stress and Strain Vectors 
 
In the following equations { } and [ ] denote a 9-element 
vector a 3 by 3 matrix, respectively. Superscript T 
indicates a transposed array. A superposed dot indicates 
the rate and |  | refers to the norm. Following this notation 

|}{|  is the length of a vector whereas |}{|  represents 

a unit vector (   |}{||}{|  ). A comma followed by a 

subscripted variable implies the partial derivative with 
respect to that variable. Bars over the stress quantities 
refer to points on the bounding surface. The effective 
stress, strain and Kronecker’s delta vectors are defined as 
follows: 
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The applied stress vector is proportioned to each 

plane by multiplying related transitive matrix ][ iT  that are 

derived from the unit vectors. The following stress 
components are defined on each plane: 
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where ][ iT  is defined as: 
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The stress ratio of each plane is defined as follows:                                                                                                                                                      

n


        (4) 

 

2.3 Plasticity of New Constitutive Model 
 

The plasticity of the new model is generally similar to the 
original model as proposed by Crouch et al. (1994) and 
follows the classic plasticity: 

 

}{}{}{ pe         (5) 

 

which states separate components of elastic }{ e  and 

plastic }{ p  strain vectors: 
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where ][ eC  and ][ pC  are defined for each plane as: 
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where, iK and iG  are bulk and shear moduli at plane i . 

 Q  and  P  are defined as the unit normal to the loading 

surface and the unit direction of the plastic strain rate, 

respectively. T
eC ][  and T

pC ][  are calculated based on 

numerical integration as follows: 
 

ii

e
iT

e

ii

e
iT

p

CwC

CwC

][8][

][8][

13

1

13

1
















    (8) 

 
The following 4 surfaces must be defined in this 

constitutive model: 
 

 Failure surface to describe the critical state; 

 Bounding surface to record the previous loading 
dominion and defining the plastic loading surface; 



 Loading surface to define the direction of plastic 
loading; and, 

 Plastic dilatancy surface, which is determined using 
the ratio of volumetric to deviatoric plastic strain. 

 
Details of the original and the new multilaminate 

models are presented by Crouch et al. (1994), and 
Sadrnejad and Karimpour (2010). A brief description of 
the new model is presented herein. 

 
2.4 Failure Surface 

 
For simplicity, in the multilaminate model failure surface is 
assumed as Mohr-Coulomb form instead of the original 
elliptic form. This surface is specified by critical effective 

stress ratio, cr . The critical state is shown in Figure 2. 

 
2.5 Bounding Surface 
 
The boundary surface is a three-sector surface 
constructed with (i) a compressive ellipse, (ii) a hyperbola 
and (iii) a tensile ellipse as shown in Figure 2. The 

compressive elliptic part lies in 
01 nnn    region 

where Rnn 01
  . R  is a material constant (  R1 ). 

0n  varies as a function of the volumetric plastic strain 

and defines the size of bounding surface. The 
compressive ellipse meets the normal stress axis 
perpendicularly. The equation of the compressive ellipse 
is given as: 
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N  is the slope of a line passing from stress origin to 

the common tangent point of ellipse and hyperbola 

sectors. The hyperbola is located in 
1

0 nn    region 

and defined as: 
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The gap between N-line and the asymptote to the 

hyperbolic sector is controlled by 
0nA  . The last sector is 

a tensile ellipse situated in 0
3

 nn   region and is 

defined as: 
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2.6 Loading Surface 
 
The stress point is always located on the loading surface 
that is defined based on the bounding surface using radial 
scaling method in the compressive elliptic sector                

( R
onn   ) and deviatoric scaling method elsewhere       

( R
onn   ). 

  is defined as the scaling coefficient and defined as: 
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However, in the case of isotropic loading (stress point 

on the 
n  axis) the it can be calculated as:  

 

    nnn RR  
00

11    (17) 

 
The loading surface equation in the radial scaling 

region is defined by substituting 

))(()(
00

RR nnn   for n and   for   in the 

compressive sector of the bounding surface (Equation 9): 
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The other two sectors of the loading surface will simply 

be defined by replacing 
n  by 

n  for and   by   in 

Equations 10 and 11: 
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The direction of plastic loading vector could be 

obtained from the following equation: 
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2.7 Plastic Dilatancy Surface and Plastic Strain Direction 
 

Similar to the loading surface, plastic dilatancy surface is 
also passing through the stress point and geometrically 



similar to bounding surface; however, a different scaling 
method is used to define the plastic dilatancy surface from 
the bounding surface. In addition, there is dissimilarity in 
comparison to bounding surface regarding the 
compressive ellipse sector. The power of two in Equation 

(9) is changed to 
gn ; thus, for  gn2  we have super-

ellipse and for 21  gn  there is a sub-ellipse: 
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Despite of the fact that the bounding and plastic 

dilatancy surfaces are geometrically identical, the non-
associated flow rule exists as the direction of loading 
increment vector differs from the direction of the plastic 
strain increment vector. The direction of plastic strain 
vector can be evaluated as: 
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The surfaces described above are schematically 

shown in Figure 2.  
 

 
Figure 2. Schematic presentation of the different surfaces 
in bounding surface model. 
 

A full description of hardening/softening and 
dependency of the bulk modulus on the stress state 
(hyper elastic formulation) has been presented by 
Sadrnejad and Karimpour (2010) and has not been 
discussed herein. 

 
3 VERIFICATION OF THE NEW MULTILAMINATE 

MODEL 
 
Results of nine drained triaxial tests performed on sand in 
two different densities were chosen to verify the 
predictions of the new multilaminate model. Figure 3 
compares the stress-strain and volumetric behavior for 
loose sand specimens (ein=0.86) under a four confining 

stresses,3. The specimen sheared under the highest 

confining stress undergoes contraction at all times during 
testing, while sample under the lowest confining stress 
shows minor contraction for axial strain up to 
approximately 2% and experiences dilation afterwards.  

Figure 4 shows the laboratory and numerical results 
for five dense specimens (ein=0.60). As expected, 
significant dilation is observed for the specimen sheared 
under the lowest confining stress. However, the specimen 
sheared under the highest confining experiences minor 
volume change.  

Comparison of the numerical and laboratory results 
presented in Figures 3 and 4 indicates that the new 
multilaminate model is capable of capturing the behavior 
of loos and dense sand specimens under low and high 
confining stresses. 

In the next sections, the capability of the new 
multilaminate model is assessed by its implementation 
into a finite difference code and comparison of the 
numerical and laboratory results of a soil-pile experiment. 

The process of the calibration of the material 
parameters input to the new multilaminate model is not 
discussed here in.  

An extensive discussion on the input material 
parameters to the new multilaminate model and their 
impact on the stress-strain and volumetric behaviors have 
been presented by Sadrnejad and Karimpour (2010). 

 
4 IMPLEMENTATION OF NEW CONSTITUTIVE 

MODEL IN A FINITE DIFFERENCE CODE 
 
The new multilaminate model was incorporated into a 
finite-difference code (FLAC 5.0) that is capable of 
numerical modeling of soils, rocks and similar materials. 
This code is based on Lagrangian calculations and it has 
an appropriate structure to model large strains.  

The individual-point code of the new multilaminate 
model was first written and checked. The model was then 
written in C++ program and exported as a Dynamic Link 
Library (DLL) file to be implemented in the finite difference 
code as a User Defined Model (UMD). This code was 
used to numerically model a soil-pipe experiment. 

 
 



 
Figure 3. Axial strain versus deviatoric stress and 
volumetric strain in the loose sand (e=0.86). 
 

 
Figure 4. Axial strain versus deviatoric stress and 
volumetric strain in the Dense sand (e=0. 60). 
 
 
 

5 LABORATORY TESTS 
 
5.1 Experimental Setup 
 
A series of laboratory tests were performed on small 
diameter HDPE pipes buried in sand under repeated 
loading by Tafreshi and Khalaj (2008) who used a tank 
that included two soil types and was 220 mm long, 1000 
mm wide and 1000 mm deep.  

The Type I soil was uniform medium sand used in a 
range of densities and expressed as a trench soil to cover 
a buried 110 mm HDPE pipe. The Type II soil was used 
as the external medium of the experiment including the 
trench walls. Mechanical properties of two soil types are 
presented in Table 2 

 
Table 2. Mechanical properties of soils used in 

laboratory tests.  

Laboratory Test Type I Soil Type II 

Particle Size 
Distribution  

(ASTM D422) 

Cu=1.51 
Cc=1.29 

D60 = 0.65 mm 
D30 = 0.60 mm 
D10 = 0.43 mm 

Cu=13.75 
Cc=0.79 

D60 = 4.85 mm 
D30 = 1.17 mm 
D10 = 0.35 mm 

Specific Gravity  
(ASTM D854) Gs = 2.67 - 

Minimum Index 
Density and Unit 

Weight  
(ASTM D4254) 

emin = 1.12 
d max = 1.26 gr/cm

3 
- 

Maximum Index 
Density and Unit 

Weight 
(ASTM D4253) 

emin = 0.55 
d max = 1.72 gr/cm

3 
- 

Modified Proctor 
Maximum Dry 

Density 
- d max = 2.30 gr/cm

3 
Wopt = 6.6% 

 

 
Figure 5. Schematic view of the experiment tank and 

soil trench 

Solid Lines: Numerical Results 



 
Figure 5 schematically shows the experimental setup 

that included a radius displacement transducer, a load cell 
and a linear variable differential transducer (LVDT). A dry 
pluviation device with different pluviation heights was 
used to reach the desired density of the Type I soil.  

 
5.2 Selected Laboratory Tests 
 
Three tests were selected to verify capability of the new 
multilaminate model in this paper. The first two tests had 
been performed without a buried pipe considering relative 
dry densities of 57% and 72% for Type I soil.  

 

 
Figure 6. Loading pattern (stress of 5.5 kg/cm

2
) 

through the time 
 

The third test included a pipe located at center depth 
of approximately 220 mm (2 pipe diameters) and relative 
dry density of 57%. Note that the trench width was 500 
mm and constant for all three tests. A typical applied 
loading pattern is shown in Figure 6 for a maximum 
applies stress of 5.5 kg/cm

2
. Table 3 summarises the 

details of the laboratory tests selected for numerical 
modeling. 

 
Table 3. Summary of laboratory tests selected for 

numerical modeling 

Experiment 

Soil Type I 
Relative 

Dry Density 
(%) 

Pipe Depth 
(mm) 

Maximum 
Applied 
Stress 

(kg/cm
2
)  

1 57% - 2.5 

2 72% - 5.5 

3 57% 220 2.5 

 
6 COMPARISON OF RESULTS OF NUMERICAL 

ANALYSIS AND LABORATORY TEST 
 
The comparison of the numerical analysis and laboratory 
results are presented in Figure 7 to Figure 10. 

The measured settlement and load with respect to 
time for the first and second tests without a buried pipe 
are shown in Figures 7 and 8, respectively. The average 
difference between the measured and predicted 
settlement for the first and second tests are 2% and 3% 
respectively.  

In the third test, a buried pipe is present and the radial 
deformation is measured. Figure 9 presents the measured 
settlement versus time and the applied load. The 
measured radial deformation versus time and the applied 
load in Figure 10. The average difference between the 
measured and predicted plate settlement and pipe radial 
deformation are 12% and 16%, respectively. 

As observed, presence of the buried pipe resulted in a 
increase of the measured and predicted deformations. 
This is partially due to soil-pipe interaction. In general, 
there is a good agreement between the results of the 
numerical analysis and laboratory tests indicating the 
capability of the new multilaminate model in predicting the 
soil behavior under repeated loading  
 
 

 

 
Figure 8. Settlement-time and settlement-load for relative density of 57% and applied stress of 2.5 kg/cm

2
. 

 



 
Figure 7. Settlement-time and settlement-load for relative density of 72% and applied stress of 5.5 kg/cm

2
. 

 

 
Figure 9. Settlement-time and Settlement-load for relative density of 57%, burial depth of 220 mm and applied stress of 
2.5 kg/cm

2
. 

 
Figure 10. Vertical diametric strain-time and vertical diametric-load for relative density of 57%, burial depth of 220 mm 
and applied stress of 2.5 kg/cm

2
. 
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