
PIERRE 2: A Stochastic Rock Fall Simulator – 
Development, Calibration and Applications 
 
Andrew Mitchell & Oldrich Hungr 
Department of Earth, Ocean and Atmospheric Sciences – University of 
British Columbia, Vancouver, BC, Canada 
 
 
ABSTRACT 
Computer models have become standard in assessing the hazards posed by rock falls, with a wide variety of models 
currently available. The PIERRE 2 model, presented here, returns to a simplified lumped-mass model assuming collinear 
impact conditions. The natural variability of rock falls is represented using: 

 A stochastic roughness angle applied to the slope; 

 Hyperbolic restitution factors to define the conservation of momentum; and, 

 A stochastic shape factor, used to vary the sphere dimensions at impact.  
Impact mechanics theory was used as the basis for these features. Their validity is demonstrated through extensive 2D 
and 3D model calibration for five distinct sites. The calibration was directed to optimal simulation of rock fall behaviour in 
multiple dimensions, including runout distance, jump height and both linear and rotational velocity. The focus of the 
model development was to produce accurate statistical distributions of the outputs for hazard assessments with limited 
site information. 
 
RÉSUMÉ 
La chute des roches est un aléa qui est évalué en général avec des logiciels numériques, et il existe une variété de 
logiciels disponibles. Le logiciel PIERRE 2, présenté ici, utilise le modèle de masse concentrée, supposant des 
conditions d’impact colinéaire. La variabilité naturelle est représentée avec : 

 La rugosité stochastique appliquée à la pente; 

 Les facteurs de restitution hyperbolique définissant la  conservation d’élan; et, 

 Un facteur de forme stochastique, utilisé pour faire varier la dimension de la sphère à l’impact. 
La théorie de la mécanique d’impact a été utilisée pour les fondements du logiciel. La validité est démontrée avec le 
calibrage extensif pour les modèles 2D et 3D du logiciel pour cinq sites distincts. L’objectif du calibrage fut la simulation 
du comportement des roches, y compris le point d’arrêt, la hauteur de passage,  la vitesse linéaire et la rotation. 
L’objectif du développement du logiciel était de faire une distribution statistique précise du rendement pour la 
détermination des aléas avec des informations restreintes sur le site.  
 
 
1 INTRODUCTION 
 
Rock falls are a common hazard affecting people and 
infrastructure below natural cliffs and in man-made 
environments such as roads, railways, quarries and open 
pit mines. The total volume of material in these events is 
often limited, but the rock fragments will usually attain 
extremely rapid velocities, thus the affected areas are 
relatively small, but the intensity of the impact is high 
(Volkwein et al., 2011). The potential source areas are 
also typically widely distributed. 

Computer models have become standard in assessing 
the hazards posed by rock falls, and there are a wide 
variety of models currently available. The main difference 
between these models is in how they represent the impact 
process. New models utilizing rigorous solutions for rigid 
body impacts have become more common; however, the 
complexity of these models makes them difficult to 
calibrate and difficult to apply in practice. Because the 
source areas are widely distributed, simpler rock fall 
models designed for large-scale hazard mapping have 
become more popular, but these models tend to use 
extremely simplified impact representations. The work 
here details a model that uses a simplified impact 
representation so that it can be effectively applied over 

large areas, but the simplifications are based on impact 
mechanics theory in order to produce more realistic 
results.  

The PIERRE 2 stochastic rock fall simulation program 
is presented in its 2D and 3D versions. An extensive 
calibration and validation program showed that the model 
can reproduce runout and kinematic behaviour of rocks 
based on relatively limited site characterization data. The 
use of the model outputs as the inputs for probabilistic 
rock fall protection system design and quantitative hazard 
assessment is also described. 
 
 
2 MODEL DESCRIPTION  
 
The PIERRE 2 model has been developed using a 
simplified impact representation, assuming the rocks can 
be approximated as spheres, undergoing collinear 
impacts on planar surfaces. Fragmentation is not 
considered in the present version of the model, thus the 
mass of the particle is constant throughout the trajectory. 
To create the naturally observed variability in rock fall 
trajectories, a stochastic variation of the slope angle at the 
impact site is introduced to replicate the net effects of the 
irregularity of both the natural boulder shapes and the 



slope surface. The conservation of momentum during 
impacts is described using hyperbolic restitution factors 
that vary depending on impact conditions. The diameter of 
the assumed sphere is also stochastically varied at impact 
to better represent the rotational-translational partitioning 
of energy.  

Between impacts, the model represents the flight 
phase of the trajectories using the classic ballistic 
parabola. Frictional sliding motion is also considered in 
the model. This model has been developed in parallel in 
2D and 3D versions.   
 
2.1 Roughness Angle 
 

The roughness angle, , defined here is similar to the one 
used in CRSP (Pfeiffer and Bowen, 1989) and other 
models. The difference is that our roughness angle is 
meant to represent the combined effects of the variability 
of the particle shape and the slope surfaces, and is not 
strictly defined in geometrical terms. At each impact, the 
roughness is applied to the slope surface by subtracting 
from the local slope angle. Negative roughness is not 
considered, as this could result in trajectories with the 
particle below the slope surface. 

Trials with various distributions were attempted, with a 
truncated normal distribution ultimately being selected 
(Mitchell, 2015). The distribution used for the 2D 
roughness is calculated using Eq. 1, which is the Box-
Muller approximation of a normal distribution with a mean 
and standard deviation both equal to 0.5, created by 
drawing two random numbers between 0 and 1, Si and Sj. 

The width of the distribution is set by the user-input scale 
value.  

 
 

tan = scale[0.5 + 0.5cos(2Sj)(-2ln(Si))
1/2

]  [1]                                         





The 3D model requires two roughness angles: one in 
the longitudinal direction, defined in the vertical plane 
containing the incident trajectory, and the other in the 
transverse direction, which is perpendicular to the 
longitudinal direction. The longitudinal roughness is 
defined in the exact same way as the 2D roughness, 

using Eq. 1. The transverse roughness, designated , 
also uses a normal distribution, but a symmetrical one, 
with a mean of zero, and allowing negative values, as 
shown in Eq. 2. 

 
 

tan = scale[0.5cos(2Sj)(-2ln(Si))
1/2

]   [2] 
 
 
2.2 Restitution Factors 
 
The conservation of momentum or energy during an 
impact is typically calculated by applying empirically 
derived coefficients of restitution. Looking at the various 
studies on this topic, there is a wide range of values 
reported for the same material, and different materials 
may have overlapping ranges, see Turner and Duffy 
(2012, Table 8-3) for a review. A review of relevant 

literature from the field of impact mechanics also shows 
that while the substrate properties have an effect, the 
impacting body’s dimensions and incident velocity will 
also have an effect (Goldsmith, 1960, Forrestal and Luk, 
1992, Pichler et al, 2005). For clarity, the term coefficient 
of restitution is replaced with restitution factor, in 
recognition of the fact that momentum conservation is not 
simply a property of the substrate material. 

During impacts, energy is spent by deformation, 
fracturing, friction and mass displacement (cratering), all 
of which intensify with increased incident kinetic energy. 
To account for this, the restitution factors in the PIERRE 
model are scaled by a hyperbolic function, proposed by 
Bourrier and Hungr (2012), with the restitution factor 
determined by the incident momentum. The present 
version of the model has the restitution factors scaled to 
the incident “deformation energy”, designated Ed, defined 
as the ratio of the incident kinetic energy over the contact 
area, having characteristic dimensions of Dvn

2
, where D is 

the rock equivalent diameter and vn is the incident normal 
velocity. The theoretical basis of this is presented in 
Mitchell (2015). 

Using a hyperbola, the momentum conservation for an 
impact can be described by a single reference point 
where there is 50% momentum conservation, En,50 and 
Et,50 for the normal and tangential directions, respectively. 
The normal and tangential restitution factors relative to the 
local slope rotated by the roughness angle(s), kn′ and kt′, 
are shown in Eq. 3: 
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In the 3D version of the model, the tangential 

restitution factor is applied to both the longitudinal and 
transverse velocities. 
 
2.3 Shape Factor 
 

Boulders are represented as spheres in the program, 
with their equivalent radius determined from the mass of 
the boulder. The distance between the centre of mass and 
the impact point for an irregular shaped boulder will likely 
be different than the equivalent spherical radius and this 
has an effect on the rotation of the boulder. A shape factor 
that varies the radius at impact between a user defined 
minimum and maximum is included in the model to better 
represent the rotation of the boulders. (Note: this feature 
does not address the collinearity issue, it only improves 
the estimation of rotational impulse during impact.) 

 
2.4 Impact Model 
 
When the program detects an impact with the slope 
surface, it will calculate a random roughness angle. The 
restitution factors are then calculated relative to the local 
slope modified by the roughness. Finally, a random shape 
factor is calculated, and the resulting quantities are used 
in the calculations for momentum conservation.  



The equations derived by Goldsmith (1960) for the 
impact of a rigid sphere on an infinitely massive planar 
surface have been used as the basis for this impact 
model. The first stage is to calculate the inclination of the 

incident impulse vector, called the friction limit angle, 



 

     [4] 

 
 
During an impact, slip will occur, which is sliding 

motion at the contact point. If the slip is fully contained 
within the impact period, the rotational and tangential 

velocities will be synchronized, i.e. vt
re

 = R
re

. This 

scenario occurs when the interface friction angle, is 

greater than . In this case, termed a contained slip 
impact, the following equations are used: 

 
 

 [5] 

 
 
If synchronization of the rotational and tangential 

velocities has not occurred during the impact, the situation 
is termed an uncontained slip impact, and the following 
set of equations are used: 

 
 

[6] 

 
 
This impact calculation is also used in the 3D model, 

with the tangential restitution factor applied to the 
longitudinal and transverse linear and rotational velocity 
components. Further details on the 3D model are 
presented in Gischig et al. (2015). 

Within this relatively simple framework, the stochastic 
roughness, variable restitution factors and stochastic 
shape factor (parameters listed in Table 1) are able to 
represent the naturally observed variation in trajectories. 
The validity of the model is demonstrated by the 
calibration process, detailed in the following section.  

 
 

3 2D CALIBRATION & VALIDATION 
 
The model was calibrated using data from experiments 
with detailed kinematic information on two natural slopes, 
Vaujany, France and Ehime, Japan, and excavated 
slopes at three Austrian quarries. The results from the 
calibrations were then applied to a natural slope, Tornado 
Mountain, and an excavated slope at Nicolum quarry, 
both in British Columbia. The model parameters have 
been determined by calibration, either through systematic 
parametric or Monte Carlo simulations, or by trial and 

error. Despite having a relation to physical properties of 
the materials, the parameters are not strictly physically 
based. Details of the specific calibrations to determine 
values for the model inputs are given in this section. 

The Vaujany test site is located on a talus slope with 
an avalanche channel that is free of large trees on the 
upper slope section. A forest road crosses the test slope 
approximately 150 vertical m lower than the release point, 
and below that is a more conical slope consisting of 
coarser talus. In 2003 experiments carried out by 
IRSTEA, Grenoble, a total of 100 rocks were released and 
the runout distances were recorded along with the jump 
heights and velocities at two locations on the upper slope, 
designated Screen 1 and Screen 2. Further details of the 
site and the experimental program are provided in Dorren 
et al. (2005). 

An initial parametric study was carried out to 
determine the model sensitivity to the roughness and 
normal deformation energy, and to narrow the range of 
inputs for detailed calibrations. A set of inputs were found 
that gave a reasonable compromise between being able 
to predict the runout distribution and the jump height and 
the velocity distributions simultaneously. Details of this 
study will be presented in a future paper.  The main 
conclusions from the initial parametric study were: 

 The model is most sensitive to roughness; 

 Increasing roughness will decrease runout, 
velocity and the average jump height; however, 
higher roughness values are necessary to 
produce the extreme values for jump height; and, 

 Increasing the normal deformation energy will 
increase runout and jump height.  

Following the initial calibration with the Vaujany data, 
these same parameters were applied to the Ehime 
simulation. The Ehime test site is an open slope 
approximately 45 m high, with weak bedrock thinly 
mantled with soil transitioning to a compact talus slope. 
These tests included information on both linear and 
rotational velocities, which allowed for the calibration of 
the shape factor. The tests used four cast concrete 
spheres and seven cast cubes, as well as 12 natural 
rocks. The calibrated parameters from Vaujany provided 
good estimates of the linear velocities (Figure 1), but 
tended to over-predict the rotational velocity. To address 
this, plots provided by Ushiro et al. (2006) showing the 
relationship between the rotational and linear kinetic 
energy were used to calibrate the shape factor.   

 



 
Figure 1. Incident velocity, v

in
, vs. elevation plot for the 

Ehime natural rock simulation. 
 
 

By including the shape factor, it was possible to more 
closely reproduce the observed relationships between the 
rotational and linear kinetic energy. By doing this, the 
prediction of the rotational velocity, ω, is also improved, 
as shown in Figure 2, and the prediction of the linear 
velocity is not strongly affected. The range of rotational 
velocities predicted by the program is still greater than 
what was observed, but the inclusion of the shape factor 
improves the overall prediction for rotational velocity. 

The Vaujany model was re-run with the shape factor 
for a final calibration. The results for the runout 
distribution, shown in Figure 3, and jump height and 
velocity distributions, Figure 4, all matched well at this 
final stage. The calibrated parameters are listed in 
Table 1. 
 
 
Table 1. Summary of Vaujany/Ehime calibrated model 
inputs. 

Model Input Firm Talus Forest Road 

θscale 0.7 0.4 

En,50 15 

Et,50 50 

φ 30° 

Shape (min – max) 1.0 – 1.5 

 
 

 
Figure 2. Rotational velocity vs. elevation plot for the 
Ehime natural rock simulation. 
 
 

 
Figure 3. Observed vs. simulated runout distributions for 
the Vaujany calibrated model. 
 
 
These parameters calibrated from Vaujany and Ehime 
were applied directly to the Tornado Mountain model in a 
pseudo-forward analysis. A detailed description of the site 
is provided by Wyllie (2014). At this site in eastern British 
Columbia, two large boulders detached from a cliff and 
travelled over 600 m down a talus slope, breaking small 
trees on their way. The tree-strike locations were taken as 
an indication of the jump height for comparison. Each 
boulder was simulated with 50 trajectories. The jump 
height and final stopping positions were reasonably 
predicted by the model results, shown in Figure 5.     



 
Figure 4. Observed vs simulated jump height and velocity 
distributions at the Screen 2 location for the Vaujany 
calibrated model. 
 
 

 
Figure 5. Observed vs simulated jump height vs. runout 
for boulders a and b, observed runout shown by the 
dashed vertical line for the Tornado mountain model. 
 
 
Calibrations were also carried out for hard, exposed rock 
quarry slopes. The calibration data was taken from three 
Austrian quarries. This was done as part of a broader 
study on hazard zones within quarries, currently in review 
(Preh et al., 2015). The results of that calibration are 
summarized in Table 2. The shape factor was not 
considered in this calibration. 
 
 

Table 2. Summary of Austrian quarry calibrated model 
inputs. 

Model Input Quarry Face Quarry Floor 

θscale 0.65 0.35 

En,50 5 

Et,50 50 

Φ 30° 

 
 
The effect of the input profile resolution was also 

tested by Preh et al. (2015). The results obtained using 
photogrammetry data with a resolution of approximately 
3 cm, and those obtained by smoothing the profile to its 
general shape, with section lengths of several metres, 
showed very little difference. For example, the predicted 
95

th
 percentile runout distance increased between 1% and 

5% using the smoothed topography for the sites tested 
(Preh et al. 2015).  

The model parameters calibrated from the Austrian 
quarries were applied to the Nicolum quarry in BC. Data 
from experiments conducted by the Ministry of 
Transportation and UBC Geological Engineering in 1998 
were used for comparison. During these experiments, 34 
rocks were released from the top of the quarry and 
videotaped as they fell approximately 80 m to the quarry 
floor. Grid marks were painted on the quarry face and 
surveyed. By analysing the impact locations and timing 
from the videos, the trajectories could be reconstructed, 
allowing for the determination of the jump heights and 
velocities. It can be seen in Figure 6 that applying the 
parameters calibrated from the Austrian study to Nicolum 
results in a good prediction of the velocity vs. elevation. 
 
 
4 3D CALIBRATION 
 
A 3D version of this model has been developed in parallel 
with the 2D model. A description of the model and the 
results of an initial calibration have been published 
(Gischig et al., 2015). The 3D Vaujany model presented 
by Gischig et al. has been recalibrated with the new 
roughness angle distribution (Eq. 1 and 2), and the shape 
factor. The second calibration was also done with the 
objective of having as many of the parameters matching 
the 2D calibrated parameters as possible. Using the 
parameters given in Table 3, the runout prediction and the 
velocity and jump height predictions at both Screen 
locations matched the observations and the 2D simulation 
results well. 
 
 



 
Figure 6. Incident velocity vs. elevation plot for the 
Nicolum simulation. 

 
 

Table 3. Summary of the 3D Vaujany calibrated model 
inputs. 

Model 
Input 

Upper 
Talus 

Forrest 
Road 

Lower 
Talus 

θscale 1.0 0.4 1.5 

ψscale 0.9 0.3 1.0 

En,50 15 

Et,50 50 

φ 30° 

Shape   
(min – max) 

1.0 – 1.5 

 
 

A 3D version of the Nicolum quarry model was also 
produced. The deformation energy and friction angle 
parameters found in the Austrian quarry calibrations were 
used directly in the 3D model. The roughness angle was 
set so that the total roughness would be similar to the 2D 
model and the ratio between the longitudinal and 
transverse roughness would be similar to that found for 
the Vaujany simulation. By doing this, it was possible to 
approximately match the areal distribution of impacts, and 
the velocity versus elevation profile, shown in Figure 7. 

 
 

 
Figure 7. Observed vs. simulated velocity for the 3D 
Nicolum model. 
 
 
5 APPLICATIONS 
 
Aside from validating the model with pseudo-forward 
analyses from the Tornado Mountain and Nicolum 
datasets, the model outputs were used as design input 
values and compared to the observed data with reliability 
engineering principles for the Vaujany data. The 
ETAG 027 rock fall barrier design guidelines (Peila and 
Ronco, 2009) were used to determine interception height, 
hi,  serviceability energy limit (SEL), and maximum energy 
limit (MEL) for hypothetical barriers at the Screen 1 and 
Screen 2 locations using the 2D and 3D versions of the 
model. Using reliability engineering principles, the 
probability of the design parameters derived from the 
model being exceeded were calculated (Duncan, 2000). 

Following the ETAG 027 guidelines, the 95
th
 percentile 

(P95) for the jump height and for the velocity at each 
Screen location were calculated. The rocks used in the 
test were all of a similar size, thus differences in 
behaviour were not noted during the experiments, i.e. the 
jump height and velocity were independent of the rock 
mass for the range of sizes tested. The maximum volume 
recorded in the test was used in the calculation of the 
design block mass. Factors of safety were selected for a 
high confidence in the topography and block size, and 
trajectory information derived from computer modeling. To 
determine the reliability of the prediction, i.e. the 
probability that the factor of safety is less than 1, Weibull 
distributions were fit to the observed datasets so that 
design values outside the range of the observations could 
be evaluated.  



The results of the hypothetical design for hi, SEL, and 
MEL along with the probability of exceedance, P(E), from 
comparison to the Weibull distributions fit to the observed 
data are summarized in Table 4. 

  
 

Table 4. Summary of hypothetical design values and 
probabilities of exceedance 

Model Screen 1 hi SEL MEL 

2D Design 4.02 m 1070 kJ 1390 kJ 

 P(E) 2.4 % 0.072 % 0.004 % 

3D Design 4.66 m 1020 kJ 1320 kJ 

 P(E) 1.1 % 0.18 % 0.019 % 

Model Screen 2 hi SEL MEL 

2D Design 4.16 m 1150 kJ 1490 kJ 

 P(E) 6.2 % 0.099 % 0.006 % 

3D Design 4.91 m 1320 kJ 1610 kJ 

 P(E) 3.3 % 0.002 % 5E-5 % 

 
 

Examination of the P(E) values shows the minimum 
design barrier height obtained from the P95 simulation 
values achieves approximately that level of containment. 
Although the P95 jump height from the simulation is 
somewhat under-predicted, the applied factors of safety 
decrease the probability of failure significantly. If greater 
than 95% containment is desired, a higher factor of safety 
should be applied to the model results. The design SEL 
and MEL values are conservative in all cases because the 
predicted P95 values for the velocity were close to the 
observations.   

Beyond determining the height and design energy, 3D 
simulation results can be used to determine the required 
width for rock fall protection systems. Using the Vaujany 
simulation, a map of the areas potentially impacted from a 
localized source, shown as the probability of impact, can 
be produced, with an example shown in Figure 8. 
 
 

 
Figure 8. Impact probability map for the Vaujany 
simulation.  
 
 

By selecting a target containment, say 99%, a barrier 
would have to have a width crossing all the areas with a 
probability of impact greater than 0.01 (the yellow zones 
on the impact map).  

Another application is creating quantitative hazard 
maps. The simulation results can be used to compile 
maps showing the return period for trajectories exceeding 
a certain energy threshold (Abruzzese and Labiouse, 
2014). The trajectory data can be filtered to show the 
frequency of boulders with a jump height or kinetic energy 
greater than some threshold. An example of a map 
prepared with a threshold kinetic energy of 500 kJ is 
shown in Figure 10. If we assume the site has, on 
average, one rock fall event of this magnitude every year 
(1.0 to 1.4 m equivalent diameter for the simulation), the 
annual probability of a boulder of that magnitude 
impacting an area can be determined directly from the 
map. 

 
 

 
Figure 9. Probability of kinetic energy > 500 kJ map for 
the Vaujany simulation. Note the logarithmic scale for the 
probability of exceedance. 

 
 
It can be seen that the total area potentially affected 

by rock fall impacts is quite large (Figure 9), but the area 
with a higher probability of a high intensity impact is much 
smaller, mostly confined to the well-defined channel in the 
upper slope. 
 
 
6 CONCLUSIONS 
 
The recent trend in computer modeling of rock falls has 
been towards making increasingly complex rigid body 
models. The model presented here has returned to a 
simpler, lumped mass particle representation, with 
stochastic elements to achieve the variability that is 
observed in actual rock fall events. The level of detail 
required for the model inputs is in line with the relatively 
limited site information typically available during field 
studies. The speed of modern processors can be utilized 
to create statistically significant samples of simple model 
runs as opposed to making fewer model runs of a more 
complex – and more poorly constrained – model. 

The calibration of the model had the goal to accurately 
represent runout distances, jump heights and velocities. 
Model input parameters derived from this calibration 
process were then applied to separate sites with broadly 



similar characteristics as a means of validating the model. 
A pseudo-forward analysis showed that these input 
parameters resulted in realistic estimates of the rock fall 
dynamics and/or runout. There has not been an attempt to 
directly compare the PIERRE 2 model results to those 
from other rock fall modelling software at this time.  

The model has also been developed with the objective 
of providing design input values that are safe, but not 
overly conservative. Hypothetical design calculations 
compared to observed jump heights and kinetic energies 
show that the results are appropriate for design purposes. 
The model presented here is well-suited for application to 
quantitative hazard assessment.  
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